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Motivation and Background

• ELMs and the edge pedestal are key
fusion plasma issues
– “Pedestal Height” controls core

confinement and therefore Q
– ELM heat pulses constrain plasma

facing materials

• Peeling-Ballooning Model of ELMs - significant successes
– ELMs caused by intermediate wavelength (n~3-30) MHD instabilities

• Both current and pressure gradient driven
• Complex dependencies on ν*, shape etc due to bootstrap current and “2nd stability”

– Successful comparisons to experiment both directly and in database studies

• Need to understand sources and transport to get profile shapes (“pedestal width”)
• Rotation and non-ideal effects to precisely characterize P-B limits, nonlinear

dynamics for ELM size



Outline

• Toroidal Flow Shear
– Conventional ballooning theory (1D)
– How toroidal rotation complicates the theory (1D⇒2D)

– Eigenvalue formulation and resolution of ‘discontinuity’

– Impact on peeling-ballooning modes in the tokamak edge region

• Initial Nonlinear ELM Simulations
– General challenges

– Single fluid extended MHD (NIMROD)

– 2 fluid reduced Braginskii (BOUT)

• Fast burst of radially propagating filaments

• Summary and Future Work



Conventional ballooning mode theory

We seek solutions ξ~e−inφ and consider large toroidal mode number, n
the largest operators in the ideal MHD equations are then those related to field

line bending:

In order to balance terms, we must ensure (B.∇)ξ∼1, ie

We can then write the full ideal MHD equations (schematically) in the form:

For large n and taking solutions ~eγt, we then derive the ballooning equation:

Higher order theory⇒choose θ0 to maximize γ(θ0)
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Incorporate toroidal flow shear

• We introduce a toroidal flow:

– introduce the ordering:

• The principle effect is a Doppler-shift of the mode frequency, so we have

• To remove rapid radial variations, we introduce a time-dependent eikonal:

• Then the “ballooning” equation with flow becomes:

• The presence of time in the coefficients⇒we can no longer assume
eigenmode solutions ~eγt: this becomes a 2-D initial value system to solve
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The weak flow shear limit: relation to conventional
ballooning theory

• Let us define τ=Ω′t/q′−θ0; ∂/∂t→ (Ω′/q′) ∂/∂τ and seek Floquet-type solutions:

• We then have

• For low flow shear, this has a separable solution of the form

• where F satisfies the conventional ballooning equation with θ0 → τ and
eigenvalue γ(τ)

• The boundary condition that A be periodic provides:
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The time-dependent-eikonal results

• All previous studies of the effect of flow shear on ballooning modes have
been based on this type of analysis
– valid in the limit n→∞

– Then, in the absence of flow we choose θ0 to maximize γ(θ0)

– For infinitesimally small flow, we average γ(θ0) over θ0

– There is a discontinuity in the theory, which we would like to understand

– Suggests that flow shear could in principle have a big effect on ballooning modes

• For example: Miller et al (s−α equilibrium):
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Flow shear and the Eigenmode Formalism

• We would like to develop an eigenmode formalism for the effect of flow
shear on ballooning modes for a number of  reasons:
– Working with an eigenmode formalism allows us to smoothly connect to the

conventional ballooning modes as Ω′→0 and understand this ‘discontinuity’

– It allows us to calculate the radial eigenmode structure

– Provides an eigenmode frequency

– Enables consideration of finite n corrections

– Permits flow shear to be incorporated into ELITE (an eigenmode code)

• Test impact on P-B modes in experimental equilibria



0.20.40.60.80.050.10.150.20.25

The n→∞ eigenmode growth rates agree with Miller et al;
The radial mode width reduces with increasing flow shear
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Increasing n, growth rates tend to Miller result at lower Ω′
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Effect on Growth Rates is Modest in Experimental Equilibria,
Mode Structure Does Change

Rotation Shear on P-B Modes:

• Stabilizing near marginality
• Finite n and large γ

dramatically reduce effect

• Does not measurably change
expected ELM onset time

measured

n=11

Ωped=0

n=11

Ωped=10 kHz

• Mode structure strongly altered
– Narrowing and phase changes
– May impact dynamics, ELM

size



Calculated Mode Rotation Agrees with Observation during ELM

• Measured rotation profile changes from strongly sheared just before the
ELM to ~flat at ~45km/s across pedestal region at ELM onset

• Study with ELITE finds peeling-ballooning unstable just before ELM -
most unstable mode (max γ/ω*) is n=9

• Calculated frequency for this n=9 mode is ω/ωA=0.0082, Vrot=45km/s
• Suggests “locking” of pedestal region to the mode during initial phase of

ELM crash

Predicted Mode
Rotation

J Boedo, submitted to PRL
K Burrell and DIID team

Calculated Structure of Most Unstable Mode
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Initial Nonlinear Edge/Pedestal Simulations

• Many challenges for nonlinear simulations of the
edge region
– Broad range of overlapping scales and physics (L-H

transition, sources and transport, ELMs, density limit..)
– Many techniques and formulations used to simplify

core simulations are not applicable in edge
– Long term goal is to unite full set of physics into

massive scale simulations

• Here we focus on the fast timescales of the ELM
crash event itself
– Goal is to understand physics determining ELM size
– Initialize with P-B unstable equilibria, evolve dynamics

on fast timescales

• Single fluid and reduced Braginskii 2 fluid
simulations



Initial Nonlinear Studies with NIMROD find Linear
Ballooning Structure and Nonlinear Coupling to Low n’s

Single fluid extended MHD simulations carried out with NIMROD [Sovinec 03], including rapid
transition to high resistivity “vacuum” region

Linear spectrum approximately consistent with expectations from ideal calculations. Low n
modes initially have lower linear growth rate compared to higher n.

Using equipartition of energy as initial condition, the higher n modes grow linearly to large
amplitude and their beating nonlinearly drives the lower n modes to large amplitude.

n=21 linear mode structure



Filamentary Vortices Form in Early Nonlinear Phase

The coupled modes form complex structures in flow velocity and Temperature, among
other fields.

Areas of high temperature are seen flowing out

Work ongoing to extend simulations further into nonlinear phase

“Ultraviolet catastrophe” - numerical methods and two fluid diamagnetic/FLR effects

NIMROD: n=0-21



BOUT Simulation Geometry

• BOUT incorporates 2 fluid/diamagnetic physics and uses field line following
coordinates

–Bundle of lines (left) wraps around 2π poloidally
–A group of such bundles (right) spans the flux surface
–For ELM simulations, generally go 1/5 (or 1/2) of the way around the torus, ie treat Δn=5
(or Δn=2), n=0,5,10…~105, 0.9 <~ Ψ ~< 1.1



Fast Outward Burst (ELM?) Seen in BOUT Simulations

• High density (small ELM), DIII-D LSN case, 0.9 < ψ < 1.1

• Initial linear growth phase, then fast radial burst begins at t~2000, can
see positive density (light) moving into SOL and negative density
perturbations near pedestal top

Perturbed Density



Radial Burst Extended Along the Field, But Irregular

• Plots show projections of bundles of field lines onto the RZ plane -
field lines extend into and out of page (radial vs parallel)

• Linear phase: Mode has ~expected characteristics of linear mode,
radial and poloidal extent, n~20, γ/ωA~0.15

• Reducing gradients slightly stabilizes the mode- abrupt onset near P-B
boundary

• Fast Burst: Filaments extended along the field, but irregular

t=100 t=2105



Fast ELM Burst Shows Toroidal Localization

• R,φ plots on outer midplane.  Linear phase, n=20.  Burst occurs
asymmetrically at a particular toroidal location

Separatrix



Summary

• Peeling-ballooning model has achieved a degree of success in explaining ELM onset
and a number of ELM characteristics

– Extend to include rotation and nonlinear, non-ideal dynamics

• Toroidal rotation shear included in ELITE

– Discontinuity in previous studies removed via eigenmode formulation

– Small effect on predicted ELM onset, but significant modification of mode structure
(narrowing and phase)

– Encouraging comparisons with fast CER observations

• Initial 3D nonlinear ELM simulations carried out with NIMROD and BOUT

– Early structure and growth similar to expectations from linear P-B

– Radially propagating filamentary structures, similar to observations (MAST)

– NIMROD: significant nonlinear driving of low n modes

– BOUT: Explosive burst propagates outward, negative density and T bursts propagate in to
psi~0.9, significant toroidal localization and irregular filamentary structure



Future Work

• Initial set of simulations provide insight into linear and early
nonlinear phases - comparisons to experiment underway

- Improved numerical techniques and BC’s to extend duration of simulations

• Move on to larger problems:
1) Toroidal scales – For some types of ELMs, need full torus (n=1 to ∼ρi)

2) Radial scales – extend to wall and further into core

3) Time scale – Include sources and drive pedestal slowly across P-B
boundary

• Scale overlap and close coupling with pedestal formation (L-H)
physics, inter-ELM transport and source (including atomic) physics

• Need optimal formulations, efficient numerics and large
computational resources  (SciDAC?)


