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Abstract

Extended magnetohydrodynamics (XMHD) includes nonideal effects such as nonlinear, an-
isotropic transport and two-fluid (Hall) effects. XMHD supports multiple, separate time scales
that make explicit time differencing approaches extremely inefficient. While a fully implicit im-
plementation promises efficiency without sacrificing numerical accuracy,1 the nonlinear nature of
the XMHD system and the numerical stiffness associated with the fast waves make this endeavor
difficult.

Newton-Krylov methods are, however, ideally suited for such a task. These synergistically com-
bine Newton’s method for nonlinear convergence, and Krylov techniques to solve the associated
Jacobian (linear) systems. Krylov methods can be implemented Jacobian-free and can be precon-
ditioned for efficiency. Successful preconditioning strategies have been developed for 2D incom-
pressible resistive2 and Hall3 MHD models. These are based on “physics-based” ideas, in which
knowledge of the physics is exploited to derive well-conditioned (diagonally-dominant) approxima-
tions to the original system that are amenable to optimal solver technologies (multigrid).

Recently,4 a novel finite-volume discretization for implicit 3D MHD applications has been de-
veloped for general, non-orthogonal geometries that is: 1) conservative, 2) solenoidal in~B and ~J ,
3) numerically non-dissipative, and 4) linearly and nonlinearly stable in the absence of physical dis-
sipation. A fully implicit Newton-Krylov solver has been developed for 3D single-fluid MHD using
this discretization concept. A physics-based preconditioner, developed by extending the ideas put
forth in [2,3], has been implemented. Multigrid methods are employed to solve the required systems
in the preconditioning stage. We will present preliminary numerical results of the performance of
the implicit solver in simple geometries.
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