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MOTIVATION

A common circumstance in plasma physics is:
I Potential ψ solves an elliptic PDE
I Physical quantities that are needed for wave, stability, transport

calculations are∇ψ, D2ψ, etc...

Finite element/finite difference based solvers lose an order of
accuracy for every derivative taken.

Can we find a way to obtain derivatives to the same order accuracy
as the solution itself, while using these same finite element/finite
difference solvers?

We show here that the answer is YES!

We demonstrate how this works for the Grad-Shafranov equation



GRAD-SHAFRANOV EQUATION

I 2-D axisymmetric equilibria are determined by solving the
Grad-Shafranov equation,

x
∂

∂x

(
1
x
∂ψ

∂x

)
+
∂2ψ

∂y2 = −µ0x2 dp
dψ
− 1

2
dI2

dψ
(1)

I ∇ψ determines magnetic field, D2ψ determines stability =⇒
Accurate derivative information is critical.

I Standard FEM codes 1,2: fixed pt. iteration, bicubic-Hermite
basis, isoparametric coordinates =⇒ 4th order in ψ =⇒ only
2nd order in D2ψ.

1CHEASE: H. Lütjens, A. Bondeson, A. Roy, Computer Physics Communications 69,
287 (1992)

2FINESSE: A.J.C. Beliën, M.A. Botchev, J.P. Goedbloed, B. van der Holst, and R.
Keppens, Journal of Computational Physics 182, 91 (2002)



LOSS OF ACCURACY FOR EQUILIBRIUM QUANTITY

Figure on the left: loss of accuracy from ψ to ∂ψ/∂x for the 2nd order
accurate FEM solver FreeFem++3

Figure on the right: loss of accuracy for the location of the magnetic
axis for the 4th order accurate FEM solver CHEASE1

3E. Deriaz et. al., CEMRACS’10 research achievements: numerical modeling of
fusion, 76-94, ESAIM Proc., 32, EDP Sci., Les Ulis, 2011.



MAIN IDEAS

1. Change of variable u ≡ ψ/
√

x, so u satisfies a nonlinear Poisson
equation:

∆u =
3
4

u
x2 − µ0x

dp
du
− 1
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dI2

du
≡ F(x, y,u) (2)

2. Instead of differentiating the solution numerically, differentiate the
PDE itself. For example, if u solves (2), then ux solves

∆ux − Fu(x, y,u)ux = Fx(x, y,u) (3)

I Use FEM to solve (2) for u.
I Use same FEM solver - along w/ now known u - to solve (3) for

ux to same order.
I Missing piece: Dirichlet boundary data for ux.



BOUNDARY DATA & DIRICHLET TO NEUMANN MAP

Tangential derivative ut can be computed by spectral differentiation
without losing an order

Problem boils down to computing normal derivative un accurately.
This is how it works

I Set u = uh + up, with

up =
∫

Ω
G(x, x′)F(x′,u(x′)) dx′ (4)

and uh harmonic: ∆uh = 0.
I Introduce new variable Uh such that∇⊥Uh = ∇uh (Harmonic

conjugate of uh)
I Uh satisfies ∆Uh = 0 and Uh

t = uh
n.



BOUNDARY DATA & DIRICHLET TO NEUMANN MAP

I Differentiate (4) analytically and evaluate integral→ up
n.

I By Green’s second identity, for any x on the boundary ∂Ω, Uh

solves the following second-kind integral

1
2
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∫
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GnUh(x′)dl′ =

∫
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GUh
n(x′)dl′ = −

∫
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Gup
t (x′)dl′

(5)
I Once we know Uh, we can take spectral derivative to obtain

Uh
t = uh

n accurately on the boundary.

Execution requires accurate evaluation of singular integrals - e.g. (4).
We use FMM accelerated Quadrature by Expansion (QBX) 4.

Computational complexity of entire process comparable to one FEM
solve.

4A.Klöckner, A.Barnett, L.Greengard, M.O’Neil, Journal of Computational Physics
252, 332 (2013)



NUMERICAL RESULTS
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Errors in derivatives of the solution of (2) using direct differentiation
of the FEM solution (old) and the method presented here (new). N is
the number of grid points in each direction.

∇u errors, demonstrating the expected 3rd order convergence for the
naive approach, and 4th order for our method.



NUMERICAL RESULTS
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Errors in derivatives of the solution of (2) using direct differentiation
of the FEM solution (old) and the method presented here (new). N is
the number of grid points in each direction.

D2u errors, demonstrating expected two order of accuracy
improvement. The leveling-off is due to round-off error, the effect of
which is amplified by taking repeated spectral derivatives.



APPLICATION - MAGNETIC AXIS
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Computation of the location of the magnetic axis requires accurate
values of∇ψ.
The above plot demonstrates 4th order convergence in this quantity,
in contrast to the 3rd order accuracy observed with CHEASE1 using
the same FEM solver.



SUMMARY

I We have demonstrated a technique for computing derivatives of
a FEM solution whose loss in accuracy of only a constant factor,
rather than an order of accuracy in N.

I The new method increases the overall complexity of the
computation by an amount comparable to a single additional
FEM solver per derivative computed.

I The new method achieves an accuracy at N = 128 that would
require N ≈ 5000 to reach via direct differentiation, while
adding only small additional computational complexity to the
problem.

I The method is iterable to an arbitrary number of derivatives, and
is independent of the order of the FEM solver. It can thus be
used as a plug-in to existing FEM Grad-Shafranov or Poisson
solvers.


