Accurately calculating equilibrium quantities with any Grad-Shafranov solver

Antoine J. Cerfon, Courant Institute NYU with L. Ricketson, M. Rachh (Courant Institute NYU) J.P. Freidberg (MIT)

March 13, 2015

MOTIVATION

A common circumstance in plasma physics is:

- Potential ψ solves an elliptic PDE
- ► Physical quantities that are needed for wave, stability, transport calculations are \(\nabla\)\(\phi\), D²\(\phi\), etc...

Finite element/finite difference based solvers lose an order of accuracy for every derivative taken.

Can we find a way to obtain derivatives to the same order accuracy as the solution itself, **while using these same finite element/finite difference solvers**?

We show here that the answer is YES!

We demonstrate how this works for the Grad-Shafranov equation

GRAD-SHAFRANOV EQUATION

 2-D axisymmetric equilibria are determined by solving the Grad-Shafranov equation,

$$x\frac{\partial}{\partial x}\left(\frac{1}{x}\frac{\partial\psi}{\partial x}\right) + \frac{\partial^2\psi}{\partial y^2} = -\mu_0 x^2 \frac{dp}{d\psi} - \frac{1}{2}\frac{dI^2}{d\psi}$$
(1)

- $\nabla \psi$ determines magnetic field, $D^2 \psi$ determines *stability* \implies Accurate derivative information is critical.
- ► Standard FEM codes ^{1,2}: fixed pt. iteration, bicubic-Hermite basis, isoparametric coordinates \implies 4th order in $\psi \implies$ only 2nd order in $D^2\psi$.

¹CHEASE: H. Lütjens, A. Bondeson, A. Roy, *Computer Physics Communications* **69**, 287 (1992)

²FINESSE: A.J.C. Beliën, M.A. Botchev, J.P. Goedbloed, B. van der Holst, and R. Keppens, *Journal of Computational Physics* **182**, 91 (2002)

LOSS OF ACCURACY FOR EQUILIBRIUM QUANTITY

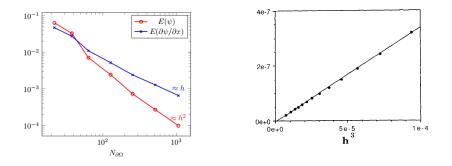


Figure on the left: loss of accuracy from ψ to $\partial \psi / \partial x$ for the 2nd order accurate FEM solver FreeFem++³

Figure on the right: loss of accuracy for the location of the magnetic axis for the 4^{th} order accurate FEM solver CHEASE¹

³E. Deriaz *et. al.*, CEMRACS'10 research achievements: numerical modeling of fusion, 76-94, ESAIM Proc., 32, EDP Sci., Les Ulis, 2011.

MAIN IDEAS

1. Change of variable $u \equiv \psi/\sqrt{x}$, so *u* satisfies a nonlinear Poisson equation:

$$\Delta u = \frac{3}{4} \frac{u}{x^2} - \mu_0 x \frac{dp}{du} - \frac{1}{2x} \frac{dI^2}{du} \equiv F(x, y, u)$$
(2)

2. Instead of differentiating the solution numerically, differentiate the PDE itself. For example, if u solves (2), then u_x solves

$$\Delta u_x - F_u(x, y, u)u_x = F_x(x, y, u) \tag{3}$$

- ► Use FEM to solve (2) for *u*.
- ► Use same FEM solver along w/ now known u to solve (3) for u_x to same order.
- Missing piece: Dirichlet boundary data for u_x .

BOUNDARY DATA & DIRICHLET TO NEUMANN MAP

Tangential derivative u_t can be computed by spectral differentiation without losing an order

Problem boils down to computing normal derivative u_n accurately. This is how it works

• Set
$$u = u^h + u^p$$
, with

$$u^{p} = \int_{\Omega} G(\mathbf{x}, \mathbf{x}') F(\mathbf{x}', u(\mathbf{x}')) \, d\mathbf{x}' \tag{4}$$

and u^h harmonic: $\Delta u^h = 0$.

- ► Introduce new variable U^h such that ∇[⊥]U^h = ∇u^h (Harmonic conjugate of u^h)
- U^h satisfies $\Delta U^h = 0$ and $U^h_t = u^h_n$.

BOUNDARY DATA & DIRICHLET TO NEUMANN MAP

- Differentiate (4) analytically and evaluate integral $\rightarrow u_n^p$.
- ► By Green's second identity, for any x on the boundary ∂Ω, U^h solves the following second-kind integral

$$\frac{1}{2}U^{h}(\mathbf{x}) + \int_{\partial\Omega} G_{n}U^{h}(\mathbf{x}')dl' = \int_{\partial\Omega} GU^{h}_{n}(\mathbf{x}')dl' = -\int_{\partial\Omega} Gu^{p}_{t}(\mathbf{x}')dl'$$
(5)

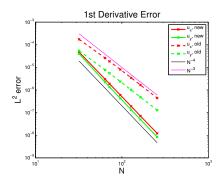
• Once we know U^h , we can take spectral derivative to obtain $U_t^h = u_n^h$ accurately on the boundary.

Execution requires accurate evaluation of singular integrals - e.g. (4). We use FMM accelerated Quadrature by Expansion (QBX)⁴.

Computational complexity of entire process **comparable to one FEM solve.**

⁴A.Klöckner, A.Barnett, L.Greengard, M.O'Neil, *Journal of Computational Physics* **252**, 332 (2013)

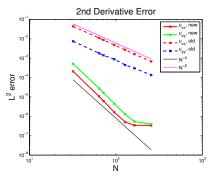
NUMERICAL RESULTS



Errors in derivatives of the solution of (2) using direct differentiation of the FEM solution (old) and the method presented here (new). *N* is the number of grid points in each direction.

 ∇u errors, demonstrating the expected 3rd order convergence for the naive approach, and 4th order for our method.

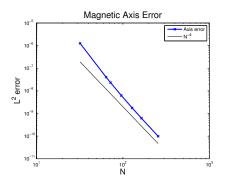
NUMERICAL RESULTS



Errors in derivatives of the solution of (2) using direct differentiation of the FEM solution (old) and the method presented here (new). *N* is the number of grid points in each direction.

 D^2u errors, demonstrating expected two order of accuracy improvement. The leveling-off is due to round-off error, the effect of which is amplified by taking repeated spectral derivatives.

APPLICATION - MAGNETIC AXIS



Computation of the location of the magnetic axis requires accurate values of $\nabla \psi$.

The above plot demonstrates 4th order convergence in this quantity, in contrast to the 3rd order accuracy observed with CHEASE¹ using the same FEM solver.

SUMMARY

- ► We have demonstrated a technique for computing derivatives of a FEM solution whose loss in accuracy of only a constant factor, rather than an order of accuracy in *N*.
- The new method increases the overall complexity of the computation by an amount comparable to a single additional FEM solver per derivative computed.
- ► The new method achieves an accuracy at N = 128 that would require N ≈ 5000 to reach via direct differentiation, while adding only small additional computational complexity to the problem.
- The method is iterable to an arbitrary number of derivatives, and is independent of the order of the FEM solver. It can thus be used as a plug-in to existing FEM Grad-Shafranov or Poisson solvers.