Analysis Of Transient-MHD-Induced Magnetic Reconnection

J.D. Callen, M.T. Beidler, C.C. Hegna, University of Wisconsin, Madison, WI The Sherwood Fusion Theory Conference, Auburn, AL, April 23-25, 2018

Issues to be addressed:

- 1) How do ideal MHD transients induce magnetic reconnection?
- 2) Criteria for transitions to low-flow, locked-response state? *Outline:*
- \bullet Motivation—ELMs, transients cause phase transitions (p 2–3).
- \bullet Equilibrium with flow and a small resonant 3-D field (p 4–5).
- Analytic theory of responses to a MHD transient (p 6-10): B_{res} response to transient MHD resonant magnetic perturbation (RMP), electromagnetic (EM) force induced by a temporally growing RMP, flow response to EM force that can lock flow and B_{res} to existing 3-D RMP, criteria for MHD transient to produce penetrated, locked-response state.
- \bullet Application to NIMROD results, RMP ELM suppression (p 11–14).
- Summary

ELM Precipitates¹ Bifurcation In δB_{θ} and V_{Ct}

¹J.D. Callen, R. Nazikian, C. Paz-Soldan, N.M. Ferraro, M.T. Beidler, C.C. Hegna and R.J. La Haye, "Model of n = 2 RMP ELM suppression in DIII-D," report UW-CPTC 16-4, 19 December 2016, available via https://cptc.wisc.edu (being revised, to be published).

• At $t \gtrsim 4705 \text{ ms} > t_2$ in DIII-D discharge 158115 with RMPs an ELM (green bar) occurs, after which HFS $n=2 \delta B_{\theta}$ increases abruptly* ($\lesssim ms$) and the edge carbon flow

begins^{*} to increase.

- On longer time scales:
 - the extra^{*} δB_{θ} continues growing^{**} up to t₃,
 - carbon flow speed (V_{Ct}) also grows^{**} up to t₃, but
 - after 4860 ms pedestal bifurcates back to ELMing state, as applied RMPs get smaller.

Figure 1: Medium time scale of the bifurcation induced by the ELM at 4705 ms that occurs when applied RMPs are largest.¹

NIMROD Results Are Sensitive To Size Of Transient²

²M. Beidler et al., "Nonlinear Mode Penetration Caused By Transient Magnetic Perturbations," 9:30 am talk, Wednesday, 2018 Sherwood Conference.

• MHD transients $B_{\text{ext,T}}$ are applied in NIMROD slab model for 1 ms = $0.0069 \times 10^5 \tau_A$ ($\tau_A \equiv a/c_A \simeq 1.45 \times 10^{-6}$ s) with slightly different amplitudes: $B_{\text{ext,T}}/B_{\text{ext,0}} = 9$ (blue, solid), and $B_{\text{ext,T}}/B_{\text{ext,0}} = 7.75$ (red, dashed).

• Responses to smaller (red) transient return to initial state, but for slightly larger (blue) transient

 $\begin{array}{l} \underline{\text{resonant field at rational surface}}\\ \underline{B_{\text{res}}} \text{ increases to transient-induced}\\ \underline{\text{reconnected/penetrated value, and}}\\ \underline{\text{resonant flow frequency }} \omega_{\text{res}} \equiv k_y V_{\text{res}} \text{ is}\\ \underline{\text{driven to low-flow, locked-response state.}} \end{array}$

• Ultimate reconnection induced by MHD transient is very sensitive to its magnitude.

0

b)

 $\times 10^{-4}$

Figure 2: Temporal evolution of responses to short resonant MHD perturbations.

Start From Equilibrium Magnetic Reconnection Theory³

• RMP-induced equilibrium 3-D field at resonant surface is^{3,4}

• When B_{res} is initially in the flow-screened, high-slip state: for $\omega_{\text{res}}\tau_{\text{VR}} \simeq 123 \gg -a\Delta'_0 \simeq 2\pi$, small $B_{\text{res},0} \simeq \frac{(a\Delta'_{\text{ext}})B_{\text{ext},0}}{i\omega_{\text{res}}\tau_{\text{VR}}} \simeq 1.3 \times 10^{-6}/i \text{ T}$ indicates a strongly flow-screened response ~ out of phase with $B_{\text{ext},0}$, but in phase with $J_z = (i/k_y\mu_0)d^2B_{\text{ext},0}/dx^2$ that causes small electromagnetic (EM) $\hat{y} \cdot \vec{J} \times \vec{B}$ force in the singular (reconnection) layer δ_{VR} .

• Resonant bi-normal (\hat{y}) flow V_{res} is determined from force balance:^{3,4}

 $egin{aligned} 0 &= \hat{F}_{y, ext{EM}} + \hat{F}_{y, ext{V}} \implies ext{LHS}(x) \equiv 1/x - 1 + (\omega_0 au_{ ext{VR}}')^2 \, (x - x^2) = A_T \, (B_{ ext{ext},0}/B_z, 0)^2, ext{ in which} \ \omega_0 &\equiv k_y V_0 ext{ is initial flow frequency}, \ x \equiv \omega_{ ext{res}}/\omega_0 ext{ and } A_T \equiv (a_
u/4) (c_{ ext{A}}^2 au_{ ext{VR}}/
u_0) (a \Delta_{ ext{VR}}/|a \Delta_0'|)^2. \end{aligned}$

• Metastable equilibrium states occur when initial flow V_0 magnitude is large enough so³ $|\omega_0| \equiv |k_y V_0| > 3\sqrt{3}/\tau'_{\mathrm{VR}}$ and RMP $B_{\mathrm{ext},0}$ is in metastable region (see next viewgraph where $\omega_0 \simeq 1570 \,\mathrm{rad/s}, \tau'_{\mathrm{VR}} \equiv \tau_{\mathrm{VR}}/|a\Delta'_0| \simeq 0.0125 \,\mathrm{s}, \omega_0 \tau'_{\mathrm{VR}} \simeq 19.5, A_T \simeq 7.4 \times 10^{10}$): minimum $B_{\mathrm{ext},0} \gtrsim B_{\mathrm{ext,\,min}} \simeq B_{z,0} \sqrt{2 |\omega_0 \tau'_{\mathrm{VR}}|/A_T} \simeq 2.3 \times 10^{-4} \,\mathrm{T}$ and maximum $B_{\mathrm{ext},0} \lesssim B_{\mathrm{ext,\,max}} \simeq B_{z,0} |\omega_0 \tau'_{\mathrm{VR}}|/(2\sqrt{A_T}) \simeq 3.6 \times 10^{-4} \,\mathrm{T}.$

³See for example R. Fitzpatrick, "Bifurcated states of a rotating tokamak plasma in the presence of a static error-field," Phys. Plasmas 5, 3325 (1998). ⁴M.T. Beidler, J.D. Callen, C.C. Hegna, and C.R. Sovinec, "Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD," Phys. Plasmas 24, 052508 (2017); Erratum 25, 049901 (2018).

Equil. Resonant Flow Is Determined From Force Balance^{3,4}

• The flow V_y is determined from the force balance (FB)

$$ho \, rac{\partial V_y}{\partial t} = F_{y,EM} + F_{y,V},$$

in which the \hat{y} direction forces are $\mathrm{EM} - F_{y,EM} = \hat{y} \cdot \vec{J} \times \vec{B} = J_z B_x,$ viscous $- F_{y,V} \simeq \rho \, \nu_0 \, \partial^2 V_y / \partial x^2.$

- Upper figure shows integrated² dependences of resonant $\hat{F}_{y,EM}$ and $\hat{F}_{y,V}$ on the resonant flow frequency $\omega_{\text{res}} \equiv k_y V_y(x=0)$ at rational surface.
- Lower figure shows equil. FB solution (curve, $B_{norm} = 0.1 \text{ T}$):
 - 3 solutions in shaded region — a metastable region — 2 stable states (solid circles) 1 unstable state (open single)
 - 1 unstable state (open circle).

Figure 3: EM and viscous (red) forces² as a function of frequency, and resonant flow frequency versus applied RMP strength.

How Can MHD Transients Cause Transitions To Low-Flow, Locked-Response States?

- <u>Hypothesis</u> is that MHD transients (e.g., ELMs, sawteeth) cause reconnection at rational surface (x = 0) and increased $\hat{F}_{y,EM}$ for a short time that can induce a locked-response state which persists.
- Following viewgraphs develop analytic model for this hypothesis:
 - 1) determine extra resonant field response $B_{\rm res}(t)$ to MHD transient $B_{\rm ext,T}$,
 - 2) evaluate the averaged EM force $\overline{F}_{y,EM}$ this $B_{res}(t)$ induces,
 - 3) solve p 5 force balance equation for resultant $V_y(x,t)$ near rational surface,
 - 4) estimate how large $B_{\text{ext},\text{T}}$ needs to be for persistent locked-response state.
- Final viewgraphs discuss application of analytic models to results from NIMROD calculations and key DIII-D experimental data.

1) Transient MHD Perturbation Induces Reconnection

• Equation for the radial (\hat{x}) component of the resonant magnetic perturbation $B_{\text{res}}(t)$ at the resonant surface induced by turning on $B_{\text{ext,T}}$ at t = 0, when a $B_{\text{ext,0}}$ RMP is already present, is obtained from $\hat{y} \cdot (\partial \vec{B} / \partial t = - \vec{\nabla} \times \vec{E})$ with a single-fluid resistive Ohm's law using a "constant ψ regime" matched asymptotic procedure:

 ${ au_{
m VR}}\left[\, \partial / \partial t + i \, \omega_{
m res}(t) + 1/ au_{
m VR}' \,
ight] B_{
m res}(t) = (a \Delta_{
m ext}') \, (B_{
m ext,0} + B_{
m ext,T} \, {
m H}\{t\}).$

- Using an integrating factor, $B_{\mathrm{res},0}$ from p 4, initial flow frequency $\omega_{\mathrm{res}}(t) \rightarrow \omega_{\mathrm{res}}(0)$, and $t/\tau'_{\mathrm{VR}} \ll 1$, the solution for $\varphi \equiv \omega_{\mathrm{res}}(0) t$ is $B_{\mathrm{res}}(t) \simeq \frac{(a\Delta'_{\mathrm{ext}})}{i\,\omega_{\mathrm{res}}(0)\tau_{\mathrm{VR}}} \left[e^{-i\varphi}B_{\mathrm{ext},0} + B_{\mathrm{ext,tot}}(1-e^{-i\varphi})\right]$, in which $B_{\mathrm{ext,tot}} \equiv B_{\mathrm{ext,T}} + B_{\mathrm{ext,0}}$.
- The EM force is proportional to the out-of-phase part of $B^*_{\rm res}(t)$ caused by its imaginary part, which assuming $\varphi \leq 1$ and using the approximation $e^{-i\varphi} \simeq 1 i\varphi \varphi^2/2$ yields

$$\mathcal{I}m\{B_{
m res}^{st\,arphi\leq 1}\} \,\simeq\, rac{(a\Delta_{
m ext}')}{\omega_{
m res}(0)\, au_{
m VR}}\,\Big[rac{[\,\omega_{
m res}(0)\,t]^2}{2}\,B_{
m ext,T}+B_{
m ext,0}\Big], \hspace{1cm} ext{in which in the last bracket the}$$

 $[\omega_{\rm res}(0)t]^2$ term is driven by the MHD transient and the last term is due to existing RMP.

2) Out-Of-Phase $\mathcal{I}m\{B_{res}^*\}$ Causes EM Force On Plasma

- The \hat{y} force balance equation on p 5 can be written as $\frac{\partial V_y}{\partial t} - D_\mu \frac{\partial^2 V_y}{\partial x^2} \simeq \frac{\langle \mathcal{R}e\{J_z B_{\text{res}}^*\} \rangle_{x,y}}{\rho} \equiv \frac{\overline{F}_{y,\text{EM}}}{\rho}, \quad \text{in which } D_\mu \equiv \nu_0 = \frac{a^2}{\tau_\mu} \simeq 4 \text{ m}^2/\text{s}.$
- The average of the EM force density $F_{y,EM}$ over the thin viscoresistive layer width $\delta_{\rm VR}$ about x = 0 and the periodicity length $L_y \equiv 2\pi n/k_y$ is worked out as follows:

$$egin{aligned} \overline{F}_{ ext{y,EM}}(x,t) \ & \equiv \ \int_{-\delta_{ ext{VR}}/2}^{\delta_{ ext{VR}}/2} rac{dx'}{\delta_{ ext{VR}}} \int_{-L_y/2}^{L_y/2} rac{dy}{L_y} \, rac{\mathcal{R}e\{J_z(x',t) \, B^*_{ ext{res}}(x,t)\}}{
ho} \ & = \ - \, \mathcal{I}m\{B^*_{ ext{res}}(t)\} \, \delta\!\left\{rac{x}{\delta_{ ext{VR}}}\right\} rac{1}{2 \, k_y \delta_{ ext{VR}} \, \mu_0
ho} \int_{-\delta_{ ext{VR}}/2}^{\delta_{ ext{VR}}/2} rac{d^2 B_{ ext{ext,tot}}(x')}{dx'^2} \ & \simeq \ - \, \mathcal{I}m\{B^{*\,arphi \leq 1}_{ ext{res}}\} \, \mathrm{H}\{t\} \, \delta\{x\} \, rac{(a\Delta'_{ ext{ext}}) \, B_{ ext{ext,tot}}}{2 \, (k_y a) \, \mu_0
ho} \ & = \ - \, rac{V_{ ext{res}}(0)^2 \, T_{\mathcal{E}}}{4 \, (k_y a) \, [\omega_{ ext{res}}(0) \, au_{ ext{VR}}]} \, \left[\left[\omega_{ ext{res}}(0) \, t\right]^2 + rac{2 \, B_{ ext{ext,tot}}}{B_{ ext{ext,T}}}
ight] \, \mathrm{H}\{t\} \, \delta\{x\}, \end{aligned}$$

which uses $J_z = (i/k_y\mu_0) \partial^2 B_{\text{ext,tot}}/\partial x^2$, $\mathcal{R}e\{iB_{\text{res}}^*\} = -\mathcal{I}m\{B_{\text{res}}^*\}\delta\{x/\delta_{\text{VR}}\}$, $B_{\text{res}}, B_{\text{ext}} \propto \sin k_y y$ yields $\int_{-L_y/2}^{L_y/2} dy \sin^2 k_y y = L_y/2$, $\mathcal{I}m\{B_{\text{res}}^*\} \simeq \mathcal{I}m\{B_{\text{res}}^{*\,\varphi \leq 1}\} \,\mathrm{H}\{t\}$, $\delta\{x/\delta_{\text{VR}}\} = \delta_{\text{VR}}\,\delta\{x\}$, $\int_{-\delta_{\text{VR}}/2}^{\delta_{\text{VR}}/2} dx' \, d^2 B_{\text{ext}}/dx'^2 = \Delta_{\text{ext}}' B_{\text{ext,tot}}$, $\delta_{\text{VR}} \equiv a S_{\text{sh}}^{-1/3} P_{\text{m}}^{1/6} \simeq 0.00745 \,\mathrm{m}$ is VR layer width, and $T_{\mathcal{E}} \equiv \frac{(a \Delta_{\text{ext}}')^2 (B_{\text{ext,T}} B_{\text{ext,tot}})/2\mu_0}{\rho_m V_{\text{res}}(0)^2/2} \simeq 765$, is the ratio of transient RMP to flow energy.

JD Callen/Poster P3.017, Auburn Sherwood Conf — April 23-25, 2018, p8

3) Flow Responds To Transient-Induced EM Forces²

• Force balance equation on p 5 is
solved for
$$\Delta V_y \equiv V_y(x,t) - V_{\text{res}}(0)$$

using a local Green function
 $G(x,t|x_0,t_0) = \frac{e^{-(x-x_0)^2/4D_\mu(t-t_0)}}{\sqrt{4\pi D_\mu(t-t_0)}}$, which yields
 $\boxed{\Delta V_y(x,t)}_{V_{\text{res}}(0)} = \int_0^t dt_0 \int_{-\infty}^\infty G(x,t|x_0,t_0) \frac{\overline{F}_{y,\text{EM}}(x_0,t_0)}{\rho V_{\text{res}}(0)}$
 $= -\frac{V_{\text{res}}(0) T_{\mathcal{E}}}{4(k_y a)[\omega_{\text{res}}(0)\tau_{\text{VR}}]} \int_0^t dt_0 \frac{e^{-x^2/[4D_\mu(t-t_0)]}}{\sqrt{4\pi D_\mu(t-t_0)}} \Big[[\omega_{\text{res}}(0) t_0]^2 + 2 \frac{B_{\text{ext}}}{B_{\text{ext}}} \Big]$
 $= -\frac{(\tau_\mu/\tau_{\text{VR}})T_{\mathcal{E}}}{8\sqrt{\pi}(k_y a)^2} \Big| \frac{\omega_{\text{res}}(0) t}{\omega_{\text{res}}(0)\tau_\mu} \Big|^{1/2} \Big[\frac{16}{15} [\omega_{\text{res}}(0) t]^2 F_{\text{VT}} + 4 \frac{B_{\text{ext},0}}{B_{\text{ext},\text{T}}} F_{V0} \Big]$
in which the time-dependent spatial factors are

$$egin{split} F_{V ext{T}}[x,L_V(t)] &\simeq 1 - rac{15}{16} \sqrt{\pi} rac{|x|}{L_V} + rac{4}{3} rac{x^2}{L_V^2} + \mathcal{O}\left\{rac{|x|^3}{L_V^3}
ight\}, \ F_{V0}[x,L_V(t)] &\simeq 1 - \sqrt{\pi} rac{|x|}{2L_V} + rac{x^2}{4L_V^2} + \mathcal{O}\left\{rac{|x|^3}{L_V^3}
ight\}. \end{split}$$

Here, at $t = 345 \tau_{\rm A} \simeq 0.5 \text{ ms } L_V(t) \equiv \sqrt{D_{\mu} t} \simeq 0.045 \text{ m}$

and $V_y(x,t) \sim \text{agrees with Fig. 4 NIMROD results.}^2$

Figure 4: Response of V_y flow to EM force induced by MHD transient.

4) Estimate $B_{\text{ext},T}$ Needed For Locked-Response State

- Assume the always on $B_{\text{ext},0} = 3 \times 10^{-4} \text{ T}$ yields metastable states, i.e., is in the range $B_{\text{ext},\min} < B_{\text{ext},0} < B_{\text{ext},\max}$ on p 4 and 5.
- <u>Hypothesize transient RMP</u> $B_{\text{ext,T}} = B_{\text{ext,tot}} B_{\text{ext,0}}$ <u>induces a</u> persistent low-flow state if $\overline{F}_{y,EM}$ reduces flow at x = 0 to zero.
- Using the boxed equation on p9, the criterion_{cr} in time for $\overline{F}_{y,EM}$ to force $\Delta V_y(0, t_{\rm cr})/V_{\rm res}(0) \simeq -1$ so $\omega_{\rm res}(t_{\rm cr}) \equiv k_y V_y(0, t_{\rm cr}) \rightarrow 0$ is

$$egin{aligned} |\omega_{ ext{res}}(0)\,t_{ ext{cr}}|^{1/2} \left[rac{16}{15} \, [\omega_{ ext{res}}(0)\,t_{ ext{cr}}]^2 + 4 \, rac{B_{ ext{ext},0}}{B_{ ext{ext}, ext{T}}}
ight] \left(rac{B_{ ext{ext}, ext{T}}\,B_{ ext{ext}, ext{tot}}}{B_{z,0}^2}
ight) \gtrsim \, C_B, \end{aligned}$$
 in which $C_B \, \equiv \, rac{8\sqrt{\pi}\,(k_ya)^2 |\omega_{ ext{res}}(0)\, au_\mu|^{1/2}}{(au_\mu/ au_{ ext{VR}})\,(a\Delta_{ ext{ext}}')^2} \, rac{V_{ ext{res}}(0)^2}{c_{ ext{A}}^2} \simeq \, (2.82 imes 10^{-4})^2 ext{ and } B_{z,0} = 10 ext{ T}. \end{aligned}$

• At model's limit, i.e., $\varphi \equiv \omega_{\rm res}(0) t_{\rm cr} = 1$, this criterion predicts we need $B_{\rm ext,T}/B_{\rm ext,0} \gtrsim 6.8$, which is reasonably close to NIMROD results² shown in Fig. 2.

These Reduced, Analytic Model Results Have Been Compared In Detail To NIMROD Calculations^{2,4}

- Most model predictions compare pretty well to NIMROD results:² upper and lower limits of $B_{\text{ext},0}$ for metastable states (p 4, 5), amount of flow-screening of $B_{\text{ext},0}$ in equilibrium for large $\omega_{\text{res}}\tau_{\text{VR}}$ (p 3, 4), temporal growth of $B_{\text{res}}(t)$ in response² to applying $B_{\text{ext},\text{T}}$ (not shown here), initial space-time evolution of flow $V_y(x, t)$ in response to $B_{\text{ext},\text{T}}$ (p 9), long time temporal growth of B_{res} (p 3) determined from modified Rutherford equation when island width exceeds δ_{VR} layer width (not shown here).
- However, the present models:

give only rough criterion for $B_{\text{ext},\text{T}}$ needed to produce locked response (p 3, 10), and dynamics of responses after $B_{\text{ext},\text{T}}$ is turned off are not well predicted — see Beidler talk² at 9:30 am, Wednesday, Sherwood 2018 meeting.

Existence Of Metastable State Depends On Flow Frequency

100

80

60

40

LHS

19.5

state

unstable

14

- A metastable state only occurs if there are three solutions of equilibrium force balance (see p 4, 5 and Eq. (19) in Ref. [4]): $LHS(x) = A_T (B_{ext,0}/B_{z,0})^2,$ $x\equiv \omega_{
 m res}/\omega_0,~A_T\simeq 7.4\! imes\!10^{10}\!.$
- Metastable state occurs if $|\omega_0 au_{
 m VB}'|>3\sqrt{3}\simeq 5.2.|$
- Without metastable states states, bifurcations cannot <u>occur</u> — because responses $\omega_0 \tau'_{\rm VR} = 19.5, A_T (B_{\rm ext,0}/B_{z,0})^2 \simeq 67$, and are continuous in x.

20 8 5.2 0.2 0.4 0.0 0.6 0.8 1.0 Х low flow high flow low-slip high-slip Figure 5: Solutions of equilibrium force balance for specific values of $\omega_0 \tau'_{\rm VB}$ as a function of $x \equiv \omega_{\rm res}/\omega_0$. Black curve in Figure 3 has

here is inverted, rotated clockwise by 90°.

RMP ELM Suppression Is Not Obtained At Low Flow

• This is observed a lot. Recent DIII-D data shown below indicates a minimum carbon flow is needed to achieve RMP ELM suppression.

Figure 6: Recent n = 3 RMP data from DIII-D shows as carbon edge toroidal flow drops below ~ 10 km/s for upper triangularity of 0.3, or ~ 18 km/s for upper triangularity of 0.1, RMP ELM suppression is lost. Courtesy of C. Paz-Soldan.

Metastable State Accessibility May Explain DIII-D Results

- Analysis of equilibrium force balance equations shown on p 5, 12 indicates metastable state only occurs if $\omega_0 \tau'_{\mathrm{VR}}$ is large enough: from idealized theory^{3,4} need $|\omega_0 \tau'_{\mathrm{VR}}| > 3\sqrt{3} \simeq 5.2$, or maybe more robustly, from requirement of $B_{\mathrm{ext,max}} \gtrsim B_{\mathrm{ext,min}}$ on p 4, 5 and Fig. 5 need $|\omega_0 \tau'_{\mathrm{VR}}| \gtrsim 8$; here, $\omega_0 \equiv n V_y(0,0)/R_0$ in which $V_y(0,0) \simeq E_\rho/B_{\mathrm{pol}}$ at q = m/n while ELMing.
- The relative reconnection layer time here is $(\tau'_{\rm VR} \sim 10^{-3} \text{ s})$

$$au_{
m VR}^{\,\prime} \equiv rac{{{ au}_{
m VR}}}{{\left| {
ho _0} \Delta_0^{\prime}
ight|}} = rac{{2.104\,{{ au}_{
m shA}} S_{
m sh}^{2/3} P_{
m m}^{1/6} }}{{2\,m}} \propto rac{{
ho _0^{4/3} L_{
m sh}^{1/3} T_e \,n_i^{1/6} P_{
m m}^{1/6} }}{{m^{4/3} B_{z,0}^{1/3} Z_{
m eff}^{2/3} }} \sim rac{{T_e }}{{m^{4/3} B_{z,0}^{1/3} Z_{
m eff}^{2/3} }}$$

• For n = 2 parameters² in DIII-D discharge 158115, corrected for n = 3 in Fig. 6 and assuming carbon flow is dominated by $E_{\rho}/B_{\rm pol}$, theoreticalth carbon toroidal flow needed for ELM suppression is

 $V_{
m Ct}^{
m th} = R \,\omega_0/n \gtrsim (5.2-8) R/ au_{
m VR}' \simeq 13-20 \ {
m km/s} \ {
m versus} \ V_{
m Ct}^{
m exp} \gtrsim 10-18 \ {
m km/s} \ ({
m Fig. 6})$ and predicted flow speed is smaller for higher triangularity with its higher T_e .

Thus, minimum flow criterion for metastable state to exist roughly agrees with RMP ELM suppression conditions in DIII-D (Fig. 6)
— to be tested against more DIII-D data (C. Paz-Soldan).

Summary

- Small MHD transients (ELMs, sawteeth) in flowing tokamak plasmas with existing RMPs that produce metastable states can precipitate transitions into low-flow, locked-response states (p 2, 3).
- Quasilinear analytic models have been developed for the effects MHD transients induce (p 11):

temporal increase in magnetic reconnection and hence of $B_{res}(t)$ (p 7), resultant temporal evolution of the average EM force density $\overline{F}_{y,EM}$ (p 8), abrupt, localized decrease of $V_y(x,t)$ flow near the rational surface (p 9), and locked-response state if transient $B_{ext,T}$ size and duration are sufficient (p 10).

• This quasilinear theory provides reduced models for describing NIMROD calculations of effects — Beidler talk² 9:30 am Wed., Sherwood 2018, RMP ELM suppression in DIII-D — why it doesn't occur at low flow (p 12–14).