MHD Stability of Negative Triangularity Tokamaks
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1. Motivations: why negative triangularity
» Design philosophy prioritizes solution of divertor heat load issue
2.  Concern about the MHD Stability of negative triangularity tokamaks
» H mode confinement is poor
» L mode gets the H mode level confinement, beta limit is lower, but acceptable

3.  Our NEW results: L mode with high bootstrap current fraction can achieve even
higher beta than H mode in the positive triangularity case

High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!

ELM free, no major concern about RWMs, kink disruption, etc.

Steady state confinement, “soft” beta limit (high n ballooning)

Experiments show low turbulence level

4. Conclusions and discussion
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H-modes are good, but ELMs are unacceptable

~=>"] D3 experiment results
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Kichuchi, et al, EPS 2014
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For foreseeable material
limit, divertor heat load is a
challenging problem for
positive triangularity
tokamaks, especially for
fusion reactors




Non core-the-first design philosophy:

Negative triangularity tokamaks (Kikuchi,et al.)
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Original thoughts: Negative triangularity can gain for divertor design,
but may give up in the beta limit

> alarger separatrix wetted area,
» wider trapped particle-free scrape-off layer,
» larger pumping conductance from the divertor room.




Outline

2.  Concern about the MHD Stability of negative triangularity tokamaks
» H mode confinement is poor
» L mode gets the H mode level confinement, beta limit is lower, but acceptable
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Earlier TCV negative triangularity experiments

DIII-D Experiment Was Motivated by Results From TCV

6=+0.4

- TCV saw x2 confinement | s
improvement in negative (-98) s
over positive (+9) triangularity el '
discharges

* Achieved H-mode confinement c~§ 6
in L-mode discharge :.

- Saw reduced turbulence levels i | oy 2
in neg. compared to pos. -
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Initial Results from MP 2017-11-02: Transport

Shot 166192

Variation with Positive and Negative Triangularity R t D I I I D
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Walker and the DIII-D Team i

Summary: the Tangularity Discharges Created
in DIII-D

Unconventional negative triangularity (-8)
discharges have been created in DIII-D

- Compared to matching positive 8, they have
reduced turbulence and transport
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Important development of DIII-D experiment

I. =T, case At High Beam Power, Compared Neg. &.

L-mode and Pos. & H-mode

- Same heating trajectory
both shapes
— 7 MW NBI
— 3 MW ECH

- Pos. & goes into ELMing
H-mode at 1400 ms

» the H-mode-level
confinement (H98yp=1.2)
with L-mode-like edge
behavior without ELMs
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Stability: DIlI-D experiment interpretation

170669.01200 / 170678.01200

.Te

5
. 4L 3 i
< . 170669.01605
£ 3| = 170678.01605
neg. * L
- . pos. flipped o = 2 .
= 2 # —
= Y
1 =
o : : : PN o . . . .
0.0 0.2 04 0.6 08 1.0 1.2 0.0 0.2 0.4 0.6 08 1.0 1.2
rho rho
a4 T T T 2.0 4 - -
— Ti
8 3 - Q(b 1 _5 = 1 -
w —
3 >
© 2+ = 1.5
=) 5 =
= 1r 0.5
+ + ."’F
.............. o . . . . . ¢ 0.0 R R . R X
0.0 0.2 04 06 08 1.0 1.2 0.0 0.2 04 06 0.8 1.0 1.2

rho rho

04/25

» Equilibrium: use the g file from experimental data reconstruction
» ldeal MHD Stability is confirmed with critical wall position 1.11,
consistent with the D3D limiter experiments
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Numerical exploration of D3D type of L-mode equilibria
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» Three types of triangularity cases: 6 = 0.4, 0, and - 0.4 are investigated
» L mode profile is assumed (close to DIIID experiments)
» Results: Positive triangularity: best
Zero triangularity: stay at middle
Negative triangularity: worst, but acceptable
WIYPEYPl) > Negative triangularity is bad for H mode
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3.  Our NEW results: L mode with high bootstrap current fraction can achieve even
higher beta than H mode in the positive triangularity case

High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!

ELM free, no major concern about RWMs, kink disruption, etc.

Steady state confinement, “soft” beta limit (high n ballooning)

Experiments show low turbulence level
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Profile comparison between

vositive and negative triangularity cases

Positive triangularity Negative triangularity

5 =-040
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» Observation: the safety factor g at edge is smaller for negative triangularity case
» Motivate us to reduce the Ohmic current to consider the advanced tokamak
scenario with high bootstrap current fraction




Negative triangularity tokamak in advanced scenario

with high bootstrap current fraction
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Given density and temperature profiles, the current is computed self consistently
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Low n (1-5) kink mode stability for

negative triangularity tokamak in advanced scenario
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High n ballooning mode stability for

negative triangularity tokamak in advanced scenario

» Because of peaked pressure
profile, high n ballooning
modes tend to give lower 0
beta, limit: 4 li (I/aB)

» Further profile optimization
is still in process

Local ballooning
tableradi i

L L
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» High n ballooning mode theory keeps only lowest order, global calculation
shows that the n=5-10 stability can be achieved.

» Possible FLR stabilization for high n modes

o1 > “Soft” beta limit 1©




Further D3D experiments, guided by our calculations, yield
interesting results based on the preliminary analyses

Shots with lower Ip did not exhibit reduced confinement

- Comparison of neg. 8F hn paaitnss
triang., last year 0.9
& 4 pinj echpwr
MA, this year 0.75 MA
- H-factor higher for betan 171646 (EFITO1)
lower Ip betan 176282 (EFITO1)
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Note that: the confinement time usually goes with

NQL FUSION FACILITY O L4 . . .
: the current in the positive triangularity case
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3. Our NEW results:

4. Conclusions and discussion
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Conclusions: Negative triangularity

& L-mode &low I and high bootstrap current

* The benefits of negative triangularity are not limited to divertor

» NEW: negative triangularity also improves MHD stability
v’ Steady state confinement with high bootstrap current fraction
ELM free
high resistive wall mode beta limit
Low n stability, reduce the kink type disruption possibility

<N X X

soft instabilities (high n ballooning modes) to avoid high inevitable
beta state, that eventually causing disruption, FLR stabilization? Global effects
v'  Experiments already show a reduced anomalous transport
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