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"Tour Guide”

* This is NOT a traditional study of plasma physics.

* It is about a new system that is related to systems you are familiar
with in plasma physics

* There are many similarities, but some important differences. Watch
for these!

* We studied the fundamental physics of cascades and self-organization
in this system and in MHD

* It provides a new look at classic themes in plasma physics.
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Elastic Media? -- What Is the CHNS System?

* Elastic media — Fluid with internal DoFs = “springiness”

* The Cahn-Hilliard Navier-Stokes (CHNS) system describes phase separation
for binary fluid (i.e. Spinodal Decomposition)

m > |Miscible phase
" |2 Immiscible phase

0.000

-0.5000

1.000

< L \ 5.'\ Na K
N S»‘.\"\‘;\' RPTE
MR

NREUD VAR

e

t =40 t =160 t =350 Figure 5. FE-SEM micrograph of specimen aged at 400 °C for
5000 minutes.

4/23/18 [Fan et.al. Phys. Rev. Fluids 2016] Sherwood 2018 [Kim et.al. 2012] ’



Elastic Media? -- What Is the CHNS System?

* How to describe the system: the concentration field

c Y(7,t) & [ps(1,t) — pg (T, t)]/p : scalar field

"y e [-11]

* CHNS equations:

0P +v-Vip =DV (= +° — &2V )

2
o,w+v-Vw = %B¢ VUV + vV w
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Outline
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A Brief Derivation of the CHNS Model

» Second order phase transition = Landau Theory.
* Order parameter: Y(7,t) & [p,(7,t) — pg(r,t)]/p

* Free energy: .F[ip]
§? |
F(y) —fdr(—Cﬂ/JZ + C21P4 +—|\7¢| )
\
Y Y ; ,
o Cl (T)’ CZ (T) Phase Transition Gradient Penalty -15\_-10 -05 _0.2; 05 1.0 ; T1.5
* Isothermal T < T,.Set C, = —C; = 1: 4

2
F(y) —fdr(——lpz t - ¢4+€—IV¢I ‘)
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A Brief Derivation of the CHNS Model

* Continuity equation: % +V f = 0. Fick’s Law:f = —DVyu.

* Chemical potential: u = SI;EZ)) = = + 3 — &2V,

* Combining above - Cahn Hilliard equation:

2= DV = DV (=) + * — E272)

*d, = 0, + v - V. Surface tension: force in Navier-Stokes equation:
Vp , -
— ? —YlVu +vlh4v

* For incompressible fluid, V - v = 0.

at1?+5°713
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2D CHNS and 2D MHD

* 2D CHNS Equations:

—1): Negative diffusion term

0. +v-Vip = DV2(—) + 3 — E2V7%1)) | | ¥3: Self nonlinear term
2 —&27%1) : Hyper-diffusion term

drw+7v-Vw = g—l?w VTV +vVw

p
With 5=2XV¢, w = V2¢, By, = zxV, j,, = E2V 2.

* 2D MHD Equations:

6tA —+ 1_} - VA = T]VZA A: Simple diffusion term
1 -
> — n. 2 2 2D MHD 2D CHNS
atw +v-Vw = Uop VoA + v w Magnetic Potential A ()
0 Magnetic Field By

B
. . a = A . 1 ' ’
With v=zxV¢, w = V?¢, B = zxVA, j = - V2A. D?f;ﬁ;fvriy . D
0 1 2

- §

Sherwood 2018 Interaction strength
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Linear Wave

Capillary Wave:
Air
* CHNS supports linear “elastic” wave: ——
2 1 Water
w(k) =+ |—|kXB,,o| —=i(CD + v)k?
() =+ |= [kxByo| - 51(CD +v)

\
Where C = [—1 —69,V*o/k* — 6(Vhy)?/k? — 69V g - ik /k? + 30p2 + £2k?]

* Akin to capillary wave at phase inteiface. Propagates only along the
interface of the two fluids, where |B,,| = |Vi| # 0.
* Analogue of Alfven wave.

* Important differences:

>§¢ in CHNS is large only in the interfacial regions.
» Elastic wave activity does not fill space.

4/23/18 Sherwood 2018



4/23/18

UC San Diego

ldeal Quadratic Conserved Quantities

* 2D MHD
1. Energy

v®  B*
E=EK+EB=j(2 +

2o

2. Mean Square Magnetic Potential

HA = fAz d*x

)d?x

3. Cross Helicity
H¢ = J‘E-Edzx

* 2D CHNS
1. Energy
UZ 5232
E=E’<+E’9=f(2 + Zw)dzx

2. Mean Square Concentration
HY = lez d*x

3. Cross Helicity
HC = f?? . El/) dzx

Dual cascade expected! 10
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Scales, Ranges, Trends

1.000

— 0.5000
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How big is a raindrop?
e Turbulent straining
vs capillarity.

e pv?vsall.

[Hinze 1955]

Forced Unforced

t =60
* Fluid forcing = Fluid straining vs Blob coalescence

 Scale where turbulent straining ~ elastic restoring force (due surface
tension): Hinze Scale

_ —-2/9
LHN(_) 1/36Q /
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Scales, Ranges, Trends

* Elasticrange: Ly < | < L;: where elastic effects matter.
. LH/Ld~(§)‘1/3v_1/2651/18 - Extent of the elastic range

* Ly > L, required for large elastic range > case of interest

. HY Spectrum (H;(p = (Y*))
HyY

Hydro-
dynamic | Elastic Range
Range
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Scales, Ranges, Trends

Unforced

* Key elastic range physics: Blob coalescence

yNmu
| N
* Unforced case: L(t)~t?/3. @ _

2 i 2
(Derivation: v - Vo~ =V2yYVy = CAPL A A

X0
P L pLZ t=0 t =60 t =350

.
* Forced case: blob coalescence arrested at Hinze scale L.

10!

Forced

o f0¢,:0
o—eo f0¢:0.1

e * L(t)~t*/3 recovered

et Jup =50 / * Blob growth arrest observed
\ Blob growth saturation scale

tracks Hinze scale (dashed

lines)

N 100

1071

10° 10!
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Cascades

MHD |- # CHNS

* Blob coalescence in the elastic range of CHNS is analogous to flux
coalescence in MHD.

* Suggests inverse cascade of (1)?) in CHNS.

* Supported by the statistical mechanics studies (absolute equilibrium
distributions).

4/23/18 Sherwood 2018 14
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Cascades

* So, dual cascade:
* Inverse cascade of (%)
* Forward cascade of E

* Inverse cascade of (1)*) is formal expression of blob coalescence
process = generate larger scale structures till limited by straining

* Forward cascade of E as usual, as elastic force breaks enstrophy
conservation



Cascades

* Spectral flux of {(4%):

Spectral flux of (y?):

patk) = Z Tua(k'), where Tya(k) = (A}(v- VA))
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* MHD: weak small scale forcing on A drives inverse cascade

e CHNS: ¢ is unforced = aggregates naturally

* Both fluxes negative = inverse cascades

4/23/18
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Power Laws

e (A?) spectrum: (1?) spectrum:

—

-7/3

10° . ‘ 108
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« Both systems exhibit k~7/3 spectra.

* Inverse cascade of (1)?) exhibits same power law scaling, so
long as Ly > L4, maintaining elastic range: Robust process.

4/23/18 Sherwood 2018 17
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Power Laws

* Derivation of -7/3 power law:

* For MHD, key assumptions:
* Alfvenic equipartition (p(v?) ~ %(Bz) )
* Constant mean square magnetic potential dissipation rate €4, so
ena~ 2 ~(HY) ke
 Similarly, assume the following for CHNS:
» Elastic equipartition (p(v?) ~ &%(BJ))
* Constant mean square magnetic potential dissipation rate EHy, SO

HY 3.7
ey~ —~(HY )2k,

Sherwood 2018
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More Power Laws

CHNS |

-3

 Kinetic energy spectrum (Surprise!):

+ 2D CHNS: EX~k~3; | €
* 2D MHD: Ejf ~k~3/2, ¢ g,
* The -3 power law: I E—

 Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.
* Remarkable departure from expected -3/2 for MHD. Why?

* Why does CHNS €< —> MHD correspondence hold well for
(¢2)k~(z42)k~k_7/3, yvet break down drastically for energy?

 What physics underpins this surprise?

Sherwoo d 2018 19
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Interface Packing Matters!

* Need to understand differences, as well as similarities, between CHNS
and MHD problems.

2D CHNS:
» Elastic back-reaction is limited to regions of
2D MHD: density contrasti.e. |By| = |[Vi| # 0.

» Fields pervade system. » As blobs coalesce, interfacial region

diminished. ‘Active region’ of elasticity decays.

B Field v By Field

MHD CHNS

4/23/18 20
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Interface Packing Matters!

0.50

* Define the interface packing fraction P:

0.40}

# of grid points where |§¢|>Bl7/;m5 035

— R, 0.30f

# of total grid points

— 2D CHNS | |
— 2D MHD

0.25}

» P for CHNS decays;

0.15}

» P for MHD stationary! 5 N

2 .
¢ dw+vV-Vw = ?Blp - VV%Y + vV2w: small P = local back reaction

is weak.

* Weak back reaction = reduce to 2D hydro

4/23/18 Sherwood 2018 21
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Transport: Something Old |

10.0 5 [Cattaneo and

o MZ — <ﬁ2>/vjo ;Vainshtein ‘91]

e Higher v2,/(¥?%) > lower
Dy = longer E,,, persistance

1.0E

0.1

 Ultimately n asserts itself ° >0 o

time

150

FIG. 3—Magnetic energy density. Time histories of the total magnetic
energy (normalized). The values of M? are o for (a), 100 for (b), and 30 for (c).
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Spatial Structure (Preliminary)

1.0

0.8
* Initial condition: cos(x) for A 0.8 o
] . 0.6 0.2
e Shorter time (suppression phase) > | 0.0
. . . 0.4
 Domains, and domain boundaries :g'i
evident, resembles CHNS 0.2 5 —0.6
* Atransport barriers?! 0-8.0 0.2 0.4 0.6 08 Lo °
€L
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Something New, Cont’d

* For analysis: pdf of A

* Suppression phase:
e quenched diffusion

* bi-modal distribution

e guenching prevents fill-in
* conseguence i.c.

* Ohmic decay phase:

e uni-modal distribution returns

10
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Conclusion, of Sorts

e Elastic fluids ubiquitous, interestingly similar and different.
Comparison/contrast is useful approach.

* CHNS is interesting example of elastic turbulence where energy
cascade is not fundamental or dominant.

 Spatio-temporal dynamics of (bi-stable) active scalar transport is a
promising direction. Pattern formation in this system is terra novo.

* Revisiting polymer drag reduction would be interesting.



