

Introduction

- For the feasibility of the stellarator, we must design simple coils which can be produced within engineering tolerances
- Typically coil design process assumes a known target plasma surface (chosen for MHD stability, neoclassical confinement, rotational transform profiles, etc.)
- Characteristics of "good" coils
 - Minimize error in reproducing desired magnetic surfaces
 - Coil-plasma distance to allow for a blanket and plasma-facing components, and divertor
 - Sufficient coil-coil distance for diagnostic and maintenance
 - Low curvature to allow for finite thickness of conducting material Winding surface: toroidal

urface on which coils lie Plasma surface: optimized

for physics properties

Our approach: optimize winding surface using a current potential approach (used in W7-X and NCSX initial coil studies [1,2])

- Convex problem solved to obtain coils for on a winding surface
- Optimize winding surface to allow for "good" coils
- Adjoint methods are used to compute derivatives for gradientbased optimization - reduces function evaluations required

W7-X Optimization Results

We demonstrate this optimization method, beginning with the actual W7-X and HSX winding surfaces

- Simultaneously reduce the normal field error and increase coil-plasma distance in convex regions
- Coils computed on optimal surface are less complex

	Initial	Optimized
Min. coil-coil distance [m]	0.223	0.271
Max curvature [m ⁻¹]	9.01	4.84
Max toroidal extent [rad.]	0.222	0.197
Normal field error [T ² m ²]	0.115	0.0711

Elizabeth Paul,¹ Matt Landreman,¹ Aaron Bader², William Dorland¹

$$S = \sum_{j} S_j \cos(m_j \theta - n_j \zeta)$$

$$\frac{\partial f}{\partial \Omega_j} = \sum_j D_{ij} S_j$$

arXiv:1801.04317

$$\boldsymbol{A}(\Omega_i)\boldsymbol{x} = \boldsymbol{b}(\Omega_i)$$

$$\frac{f(\Omega, x(\Omega))}{\partial \Omega}\Big|_{Ax=b} = \frac{\partial f}{\partial \Omega}\Big|_{x} + \left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial x}{\partial \Omega}\Big|_{Ax=b}$$

$$\frac{\partial \boldsymbol{A}}{\partial \Omega_{i}} \boldsymbol{x} + \boldsymbol{A} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}} = \frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} \rightarrow \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}} \Big|_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} = \boldsymbol{A}^{-1} \left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} - \frac{\partial \boldsymbol{A}}{\partial \Omega_{i}} \boldsymbol{x} \right)$$
$$\frac{\partial f(\Omega, \boldsymbol{x}(\Omega))}{\partial \Omega_{i}} \Big|_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} = \frac{\partial f}{\partial \Omega_{i}} \Big|_{\boldsymbol{x}} + \left(\frac{\partial f}{\partial \boldsymbol{x}} \right) \cdot \left(\boldsymbol{A}^{-1} \left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} - \frac{\partial \boldsymbol{A}}{\partial \Omega_{i}} \boldsymbol{x} \right) \right)$$

$$\frac{\partial f(\Omega, \boldsymbol{x}(\Omega))}{\partial \Omega_i}\Big|_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} = \frac{\partial f}{\partial \Omega_i}\Big|_{\boldsymbol{x}} + \underbrace{\left(\left(\boldsymbol{A}^T\right)^{-1}\frac{\partial f}{\partial \boldsymbol{x}}\right)}_{\boldsymbol{X}} \cdot \left(\frac{\partial \boldsymbol{b}}{\partial \Omega_i} - \frac{\partial \boldsymbol{A}}{\partial \Omega_i}\boldsymbol{x}\right)$$

$$oldsymbol{A}^Toldsymbol{q} = rac{\partial f}{\partial oldsymbol{x}}$$