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Overview
•We report quasilinear modeling of inhomogeneous drift-wave (DW) turbu-

lence and zonal flows (ZFs) in phase space with full-wave effects retained.
• Specifically, by applying the Wigner–Moyal approach to the Hasegawa-

Mima equation, we treat DW turbulence as quantumlike plasma, where the
ZF velocity acts as a collective field.
•Our results improve the understanding of the zonostrophic instability, tertiary

instability, and predator-prey oscillations. Full-wave effects determined by
the ZF wavenumber q are found to be critical.

generalized Hasegawa–Mima equation (gHME)
•Can be used to study some aspects of the ITG–ZF interactions.
• Electrostatic fluctuations on the x − y plane. Ions: E ×B and polarization

drift. Electrons: adiabatic response δne = |e|δϕ/Te except for ZFs.
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•Conserved quantities (Q = 0): energy and enstrophy:
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• ϕ is normalized by Te/|e|; length unit: ion sound radius ρs; time unit: inverse
ion gyrofrequency Ω−1

i ; β: density gradient.

The role of q in tertiary instability (TI)
• The TI is the instability of a strong prescribed ZF. It is of interest due to its

potential role in finite Dimits shift, Ref. [1] has some historical discussions.
• Problem setup: linearizing the gHME on a stationary ZF velocity U(y), as-

suming the perturbation is ϕ̃ = φ(y) exp(ikxx− iωt). Then,(
d2

dy2
− 1− k2

x −
U ′′ − β
U − ω/kx

)
φ(y) = 0. (2)

• Assume U = u0 cos qy. By following and correcting Ref. [2], the TI growth
rate is approximately

γTI,1 = |kxu0|ϑH(ϑ)

√
1− %−2, (3)

where ϑ
.
= 1 − (q̄2 + 1 + k2

x)/q2, % = u0q
2/β, and H is the Heaviside step

function.
• Two necessary conditions for the TI are: (i) the Rayleigh–Kuo criterion,

namely, U ′′ = β is satisfied somewhere (i.e., q2u0 > β); also, (ii) q > 1.
• An alternative approximation of γTI is mentioned in Ref. [1]:

γTI,2 = |kxu0|[
√

2(1 + δ)]−1
√

1− δ2 − (2δ2%2)−1. (4)

Figure 1: (a) γTI(kx) at β = 0.5 and (b) γTI(β) at kx = 0.4. In both cases,
U(t = 0, y) = u0 cos qy, u0 = 1, q = 1.6, and q̄ = 0.

•Qualitatively similar conclusions apply to non-sinusoidal ZFs.

The Wigner function
• The Wigner function is obtained through the Weyl transform:

W (x,p, t) =

∫
dse−ip·sw(x+s/2)w(x−s/2),

∫
dpW (x, p, t)/(2π) = w2(x).
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The quasilinear Wigner–Moyal (WM) formulation [3]
• The fluctuation part of the gHME (Q = 0, v .

= ẑ ×∇ϕ):

∂tw̃ + ṽ · ∇w + v · ∇w̃ + β∂yϕ̃ + fNL = 0, fNL
.
= ṽ · w̃ − ṽ · w̃.

Quasilinear approximation: fNL ≈ 0. Then (with U .
= −∂yϕ),

∂tw̃ + U∂xw̃ + [β − (∂2
yU)]∂xϕ̃ = 0 ⇒ i∂tw̃ = Ĥw̃. (5)

Zonal-averaged part of gHME:

∂tw + ṽ · w̃ = 0 ⇒ ∂tU = −∂yṽxṽy. (6)

• (Zonal-averaged) WM equations (W = (y,p, t)):

∂W

∂t
= {{H,W}} + [[Γ,W ]],

∂U

∂t
=

∂
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∫
d2p

(2π)2
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p2
D

? W ?
py

p2
D

. (7)

where p2
D = 1 + p2

x + p2
y, , ?

.
= exp(iL̂/2), and

H = −βpx/p2
D + pxU +

1

2
[[U ′′, px/p2

D]], Γ =
1

2
{{U ′′, px/p2

D}},

{{A,B}} = 2A sin(L̂/2)B, [[A,B]] = 2A cos(L̂/2)B,

L̂ .
=
←−
∂x ·
−→
∂p −

←−
∂p ·
−→
∂x, e.g., AL̂B = {A,B}.

• The WM is equivalent to CE2 [4], but describes physics in phase space.

The improved wave-kinetic equation (iWKE)
•Ray approximation (or GO limit): q � min(λ−1

DW, 1), then {{A,B}} ≈
{A,B} = ∂xA · ∂pB − ∂pA · ∂xB, [[A,B]] ≈ 2AB. And

∂W (y,p, t))

∂t
= {H,W} + 2ΓW,

∂U(y, t)

∂t
=

∂

∂y

∫
d2p

(2π)2

pxpyW

p4
D

. (8)

“Drifton” Hamiltonian (the terms in red are missed in the traditional WKE):

H(y, t) = −βpx/p2
D + pxU + pxU

′′/p2
D, Γ(y, t) = −pxpyU ′′′/p4

D. (9)

The role of q in zonostrophic instability (ZI)
• The iWKE fixes the “ultraviolet divergence” issue of the tWKE in mod-
eling ZI [4]. However, even the iWKE differs from WM once q ∼ 1.

Dispersion relation of ZI from WM:

γZI =

∫
d2p

(2π)2

qp2
xpy

γZIp
2
D,+qp

2
D,−q + 2iβqpxpy

×[(
1− q2/p2

D,−q
)
W−q −

(
1− q2/p2

D,+q

)
W+q

]
,

• An example: W(~p) = π2N∑mx,y=±1 δ(px −mxkx)δ(py −myky). The pa-
rameters are β = 1, kx = 2, ky = 1, N = 100/2π2.

The predator–prey (pp) oscillation is observed from collisionless quasilinear WM simulations.
•Numerical simulation of the ZI (Fig. 3) and TI (Fig. 4). In Fig. 3, solid lines are from WM simulations, while dashed lines are from iWKE

simulations using GKEYLL [5].
• For ZI, the iWKE always predict that the ZF saturates, while WM simulations show that the ZF bounces back if q > 1. For TI, the PP

oscillation are almost always seen, since the TI requires q > 1.
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Figure 3: The initial conditions areW(~p) = 2πN δ(|~p| − pf )/pf and
U = Uq cos qy (Uq � 1). The parameters are N = 50, pf = 1, β = 1.
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Figure 4: Initially U = u0 cos qy and W = W0 exp(−p2
y)δ(px ± kx)

(W0� 1). The parameters are q = 1.6, u0 = 1, β = 1, kx = 0.4.

The importance of ZF wavenumber q during the PP oscillation

• iWKE ray trajectories qualita-
tively elucidate why VZF in-
creases monotonically.
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Figure 5: Constant H surfaces
[Eq. (9)] with U = u0 cos qy.
Three different regimes are identi-
fied based on u0.
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• A simple PP model from Ref. [6] based on the traditional WKE:

∂tE = EN − a1E2 − a2V
2E − a3V

2
ZFE , ∂tVZF = b1EVZF/(1 + b2V

2)− b3VZF,

∂tN = −c1EN − c2N + Q, V = dN2.

• E : DW energy, VZF: ZF velocity, V : mean flow velocity, and N : pressure gradient (free energy).
• b3 is the ZF collisional damping. VZF increases monotonically if b3 = 0. However, from WM simula-

tions, the PP oscillation is observed even if there is no ZF damping, i.e., b3 = 0.
• q < 1: The strong coupling of different spectral components results in the advection of DW into large
py and λ regions. This is related to runaway trajectories and associated with the ZF saturation.
• q > 1: The weak coupling results in localized (PP) oscillations in phase space.

Figure 6: WM simulation of q = 0.4 < 1 in Fig. 3.

sep

Figure 7: WM simulation of q = 1.2 > 1 in Fig. 3.

Conclusions
• The ZF wavenumber q plays an important role in ZF–DW interactions.

Hence, the GO approximation q2 � 1 is typically inadequate and the
full-wave Wigner–Moyal modeling is needed.
• The TI growth rate is calculated. It is shown that the TI develops only if
q > 1. Also, the ZI cannot be qualitatively predicted by the WKE if q > 1.
• The PP oscillations are found to be a genuine behavior if q > 1. The role

of q can be qualitatively explained by analyzing the DW phase-space
structure. A quantitative theory is yet to be developed.
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