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Overview T

e We report quasilinear modeling of inhomogeneous drift-wave (DW) turbu-
lence and zonal flows (ZFs) in phase space with full-wave effects retained.

e Specifically, by applying the Wigner—Moyal approach to the Hasegawa-
Mima equation, we treat DW turbulence as quantumlike plasma, where the
ZF velocity acts as a collective field.

e Our results improve the understanding of the zonostrophic instability, tertiary
instability, and predator-prey oscillations. Full-wave effects determined by
the ZF wavenumber ¢ are found to be critical.

generalized Hasegawa-Mima equation (GHME) 1]

e Can be used to study some aspects of the ITG—ZF interactions.

e Electrostatic fluctuations on the = — y plane. lons: E x B and polarization
drift. Electrons: adiabatic response on. = |e|dp /T, except for ZFs.
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w = (V2 —a)p : generalized vorticity,

x/ af = f—(f), <f>ﬁLix/Ofodx.

e Conserved quantities () = 0): energy and enstrophy:
E = %/dQ:C (Vo) + (ap)?], Z = %/d% w?.

e © is normalized by Te/|e\ length unit: ion sound radius ps; time unit: inverse
lon gyrofrequency ().~ I+ 8: density gradient.

The role of ¢ in tertiary instability (1))

e The Tl is the instability of a strong prescribed ZF. It is of interest due to its
potential role in finite Dimits shift, Ref. [1] has some historical discussions.

e Problem setup: linearizing the gHME on a stationary ZF velocity U(y), as-
suming the perturbation is ¢ = ¢(y) exp(ikzz — wt). Then,

d2 ) U"—ﬁ B
(5—1% —U_w/kx>¢<y>o. (2)

e Assume U = ugcosqy. By following and correcting Ref. [2], the Tl growth
rate is approximately

VTI1 = |k:cuo\?9H(19)\/1 — 077, (3)

where ¥ = 1 — (¢° + 1+ k2)/¢°, 0 = upq®/B, and H is the Heaviside step
function.

e TwWo necessary conditions for the Tl are: (') the Rayleigh—Kuo criterion,
namely, U” = /3 is satisfied somewhere (i.e., ¢>ug > 3); also, (ii) ¢ > 1.

¢ An alternative approximation of v is mentioned in Ref. [1]:

Y112 = [kl [V2(1+ 6)]” \/1 0% — (20%0%) 1 (4)
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Figure 1: (a) (k) at 8 = 0.5 and (b) y11(8) at k, = 0.4. In both cases,
Ut=0,y) =ugcosqy, up =1, ¢ = 1.6, and g = 0.

e Qualitatively similar conclusions apply to non-sinusoidal ZFs.
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The Wigner function e

e The Wigner function is obtained through the Weyl transform:

Wz, p.t) = / dse™ P S uw(zts/2w(@—s/2). / dp W (z. p. 1)/ (27) = w(x).

w(z) Fourier transform Wigner function
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The quasilinear Wigner—Moyal _

e The fluctuation part of the gHME (Q) =0, v = z x V):

~ ~

ow+v-Vu+v-Vu+ B0yp+ N, =0, INL=v w—v-w.
Quasilinear approximation: fy, ~ 0. Then (with U = —0,%),
Opb + Udpth + [B — (0,00, =0 = iy = Hab. (5)
Zonal-averaged part of gHME:
ow+v-w=0 = U = —0,U,1y. (6)

e (Zonal-averaged) WM equations (W = (y, p,1)):

oW oUu 0 [ d*p px
_H w4+, Lo / w2 )
ot ot Oy (27T)2 pD pD
where p7, = 1+ p3 + p;, ,* = exp(iL/2), and
1
— —Bps/ v + paU + = [[U”,px/pp]] = 5{{U”,px/p%}},

{{A, B}} = 24sin(£/2)B, [[A, B]] = 2Acos(L£/2)B
Zﬁ@-a_;—@-(ﬁ, e.g., ALB = {A, B}.
e The WM is equivalent to CE2 [4], but describes physics in phase space.

The improved wave-kinetic equation iWKE)

e Ray approximation (or GO limit): ¢ < min(Agy. 1), then {{A, B}} ~
{;/1,_[3:} — 6933/4.' é)lyzg __'631)14.' é)aylg, [[fQ,.E;]]:zj ZlfQJEg /\r]Cj

oW (y,p, 1))
ot

oU(y,t) 0 / d’p papyW

— o _ Y
W2 =5 =0y | np

(8)

P
“Drifton” Hamiltonian (the terms in red are missed in the traditional WKE):

H(y,t) = —Bpz/vH + 02U + U /07y, Ty, t) = —pepyU" [0, (9)

The role of ¢ in zonostrophic instability (zZ)

e The IWKE fixes the “ultraviolet divergence” issue of the tWKE in mod-
eling ZI [4]. However, even the IWKE differs from WM once ¢ ~ 1.
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e An example: W(p) = m°N D om, =1 0(pz — mgks)d(py — myky). The pa-
rameters are 8 = 1, ky = 2, ky = 1, N = 100/27°.

The predator—prey (pp) oscillation is observed from collisionless quasilinear WM simulations.

e Numerical simulation of the ZI (Fig. 3) and TI (Fig. 4). In Fig. 3, solid lines are from WM simulations, while dashed lines are from iWKE
simulations using GKEYLL [5].

e For ZI, the IWKE always predict that the ZF saturates, while WM simulations show that the ZF bounces back if ¢ > 1. For TI, the PP
oscillation are almost always seen, since the Tl requires ¢ > 1.
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Figure 3: The initial conditions are W(p) = 2rNd(|p] — pr)/pyand  Figure 4: Initially U = ugcosqy and W = W exp(—p§)5(px + k)
U = Ugcosqy (Uy < 1). The parameters are N =50, py=1,3=1. (W, < 1). The parameters are ¢ = 1.6, ug =1, 8 = 1, k; = 0.4.

The importance of ZF wavenumber ¢ during the PP oscillaton

e IWKE ray trajectories qualita- e A simple PP model from Ref. [6] based on the traditional WKE:

tively elucidate why Vzp in- DE = EN — a1E% — aaV2E — a3VRE,  OVip = biEVyp /(L + baV2) — b3V,
creases monotonically.

ON = —c1EN —coN +Q, V = AN?.

e £: DW energy, V,r: ZF velocity, V: mean flow velocity, and N: pressure gradient (free energy).

e b3 Is the ZF collisional damping. V»r increases monotonically if b3 = 0. However, from WM simula-
tions, the PP oscillation is observed even if there is no ZF damping, i.e., b3 = 0.

e ¢ < 1: The strong coupling of different spectral components results in the advection of DW into large
py and A regions. This is related to runaway trajectories and associated with the ZF saturation.

e ¢ > 1. The weak coupling results in localized (PP) oscillations in phase space.

U, Re[Wi(py, pr = 0.4)] U, Re[W(py, pr = 0.4)]
20 ‘ 6 80 — ‘ ‘ 6
—  t=8 0 —  t=8
15’ b 4 60’ 4
9 501 9
10+ 40t
| |£ o | 0
—9 20}t
0 ~JUL. 4 10}
0 ]
B e S S S R E— A=
50 ‘ 6 60 — ‘
30! | 2 40¢
20! 1= 0 il
S¥ 20+
10 ! | =2 Lol
0—/\JLJ LJL/\/— —4 0
I S S R R I S
T 6 2 T T T
80r —  t=14 A Of—v#ﬁ —

Figure 5: Constant H surfaces ; AL 4
[Eq. (9)] with U = wgcosgy. T 2 0 2 1 % -4 2 o0 2 4
Three different regimes are identi-
fied based on uy.
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Figure 6: WM simulationof ¢ = 0.4 < 1in Fig. 3. Figure 7: WM simulation of ¢ = 1.2 > 1 in Fig. 3.
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