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Introduction

The next generation of magnetic confinement nuclear fusion
experiments aims to achieve burning plasma conditions.
A clear understanding of performance requirements needed
to obtain burning or ignition conditions is desirable.
Our knowledge to that purpose has not advanced much
since Lawson’s original worka.
We include additional physics in a zero- and
one-dimensional analysis of the plasma to improve our
estimate of plasma properties relevant to ignition and
burning plasma conditions.

In this presentation:

Modified ignition criterion and burning-plasma analysis:
- Include two-fluid and α-particle effects.

Compute and compare Ṫ vs. T curves for various models.
Consider one-dimensional, two-parameter density and
temperature profiles and evaluate their effect on ignition
physics.
Use the complete model to investigate physics of burning
plasmas.

aJ. D. Lawson, Proc. Phys. Soc. London Sect. B 70, 6 (1957)

Lawson’s Time-Independent Analysis
The Lawson criterion is derived starting from the single-fluid
zero-dimensional energy balance:
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A straightforward manipulation gives the ignition criterion (with
heating power Sh = 0)
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The Starting Equations Are the Time-Dependent
Three-Fluid Energy Conservation Equations.
The starting point is the system of zero-dimensional conservation equations
for the three species, ions, electrons and αs:
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Heating terms (Shi, She) are important in:
1 Transients;
2 Burning-Plasma analysis.

For steady-state burning plasmas, Shi ≡ fi
5
Q

n2

4 < σv > Eα, similar for She, fi +

fe = 1.

Analysis Is Extended to Burning Plasmas
For future experiments, the burning plasma (Pα ≥ Sh, Q ≥ 5)
state is more relevant than ignition.
Formally, the only modification needed to extend our
analysis is to have heating power on at all times.

“Lawson-Like”Curves for Different Qs are
calculated.

0D triple product for
various values of Q is
calculated for the single-
(top) and two-fluid (bottom)
models.
In the TF case, heating is
equally divided between
ions and electrons.
Two-fluid curves can be
lower (low Q) or higher
(high Q) than single-fluid
curves.

ptotτE vs. T , SF case

TF: ptotτEi vs. Ti with τEi = τEe = τEα

Single- and Two-Fluid Models Are Compared.

SF and TF models are
compared with heating
divided between ions and
electrons (top).
If all heating goes to ions,
triple product curves are
higher for TF for Q & 5,
higher for SF if Q < 5.
If some or all heating goes
to the electrons, curves
become significantly
higher.
For Q = 5, TF curves can be
higher than the SF ignition
curve and even than the TF
ignition curve.

ptotτEi vs. Ti with τEi = τEe = τEα

ptotτEi vs. Ti with τEi = τEe = τEα

Triple Product for Ignition and Finite Q Strongly
Depends on Electron Confinement.

The effect of electron and α

confinement is considered.
For each point, the minimum
triple product for Q = 10 (top)
and ignition (bottom) is
computed.
Heating power is evenly split
between ions and electrons for
the Q = 10 plot.
Poorly confined electrons (low
c2 ≡ τEe/τEi) require higher triple
products.
Results depend moderately on α

confinement (c4 ≡ τEα/τEi).

ptotτEi vs. Ti with Q = 10, Shi = She

ptotτEi vs. Ti for ignition

One-Dimensional Parameters Are Introduced
We introduce the density and temperature profiles:

n(r, t) = n0(t)
(
1− rθ

)η
Ti,e(r, t) = T0;i,e(t)(1− rν)µ ,

with 0.1≤ (µ;η)≤ 2 and 1.1≤ (ν ;θ)≤ 4.
Spatial profiles are fixed in time even during time-dependent
simulations: We assume that profile equilibration is faster
than transients (i.e., time evolution of n0 etc.).
Ion and electron temperature profiles are kept identical for
ignition analysis, but are different in burning-plasma
analysis. Note that T0;i 6= T0;e!

One-Dimensional Problem Setup
For nα the “equilibrium” spatial profile is used, obtained
from
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and normalized to 1 at r = 0.

Keep in mind that < σv >=< σv > (Ti(r, t,)) and
τα = τα (n(r, t),Te(r, t,)).

The ion-electron equilibration time τeq also depends on
profiles, but energy confinement times τEi, τEe, τEα are
entered as constant values for each case.

The full set of equations for both ignition and
burning-plasma analysis:
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is first integrated (i.e., averaged) in space at each time step,
then advanced in time.

Note that n′α(t) 6= 0 since only the shape (and not the
numerical value) of nα is assigned.

The Importance of Profiles Is Studied

The 1D profile definitions allow
in principle for a 4D (η ,θ ,µ,ν)
space to be explored for profile
optimization (6D if one allows
for different profiles for Ti and
Te).
In practice, temperature profiles
are determined by transport and
are less amenable to external
control than density profile.
In most cases, we assign either
Ti,e(r)≡ TL(r) or Ti,e(r)≡ TH(r) (L-
or H-mode-like profiles).
For some of the burning-plasma
analysis experimental profiles
(for e.g. ITER scenarios or
DIII-D shots) are introduced as
arbitrary expressions, fits or
interpolations and different
spatial profiles are used for ion
and electron temperatures.

L- (µ = 1.5, ν = 2.5) and H- (µ = 0.5, ν =
1.5) mode temperature profiles

Limiting profiles for parametric scan

Minimum ptotτEi for Ignition Depends on Profiles.

Minimum ptotτEi for ignition, L-mode tem-
perature profiles

Minimum ptotτEi for ignition, H-mode
temperature profiles

Density profiles are varied keeping temperature profiles fixed.
Average n is fixed for all runs.
The energy confinement time needed for ignition depends on the density and temperature profiles.
For reference, the SF and MF 0D values are ' 59 and 82 [1020m−3 keV s].

Triple Product for Burning Plasma Depends on
Profiles.

ptotτEi for Q = 5 is obtained.
Both L-mode and H-mode
profiles are used.
Heating is distributed
between ions and electrons
with different fractions.
Curves are qualitatively
similar, but numerically
different.
Higher triple product is
needed when electrons are
heated.

ptotτEi vs. Ti with Q = 5, L-mode profiles

ptotτEi vs. Ti with Q = 5, H-mode profiles

Non-Constant Energy Confinement Time Is
Considered.

It is more realistic to consider

τE = τE0
Sh

Sh +Pα

. (10)

This may result in a Ṫ curve
without minimum.
On the right, ITER cases with
τEj = 2.8s (top), τE0j = 5.6s
(bottom).
In both cases, Sh = 25MW for
both ions and electrons.

Ṫ vs. T with fixed and variable τEi = τEe =
τEα

Output Power Strongly Depends on τE Model.

The gain factor Q(t) is
calculated numerically for
the fixed and variable τE

models.
It can be expected that a
larger Q will be obtained if
the heating power is
reduced once the
burning-plasma state is
reached.
This is verified for the fixed
τE case only.
Heating power is reduced
by 25% halfway through
the simulation.

Q vs. t with fixed τEi = τEe = τEα = 2.7s

Q vs. t with fixed τE0i = τE0e = τE0α = 5.4s

Experimental Performance Can Be Evaluated In
Terms of pno−α.

To fix ideas, start from he single fluid, 0D case:
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Solve

Ṫ = 0 and
∂ Ṫ
∂T

= 0 (12)

for T and one of Sh, n and τE.
Given the values, turn off the α heating and calculate p at
steady state. This is pno−α.
A similar procedure can be performed numerically for the
full MF, 1D case.

Pno−α Is Estimated for Burning Plasmas.

To estimate Pno−α:
Given Q, τEi and Sh are
calculated for different values
of Ti.
The same values of τEi and Sh
are used setting Pα = 0.
New Ti, Te are calculated and
a new PtotτEi is obtained.

The calculation is repeated
for single- and two-fluid
models.
For the TF case, heating is
evenly split between ions
and electrons or all applied
to the ions.
Results for Q = 5, 40 are
plotted vs. Ti w\α (top two
figures).
The plot is repeated vs.
Ti no−α (bottom two
figures).
Notice the log scale in the
Q = 40 plot.
In all cases τEi = τEe = τEα.

ptotτEi vs. Ti w\−α , Q = 5

ptotτEi vs. Ti w\−α , Q = 40

ptotτEi vs. Ti no−α , Q = 5

ptotτEi vs. Ti no−α , Q = 40

Pno−α Is Estimated for Burning Plasmas: Variable
τE

In the previous plots, we
assumed τE does not
depend on heating power.
We repeat the calculation
with τE = τE0

Sh
Sh+Pα

as in
Eq. (10).
No-α calculations have
higher τE →

No-α temperatures may be
higher even with lower
heating;
The no-α nTτ may be higher
than the one w\α!
Direct calculation confirms
that ptotτEi is higher in the
no-α case, even for Q = 1 (not
shown).
The difference become larger
for large Q (small no-α heating
power).
A minimum value for τE may
need to be implemented.
Results for Q = 5, 40 are
plotted vs. Ti w\α (top two
figures).
The plot is repeated vs. Ti no−α

(bottom two figures).
Notice the log scales in all
plots.
In all cases τEi = τEe = τEα.

ptotτEi vs. Ti w\−α , Q = 5

ptotτEi vs. Ti w\−α , Q = 40

ptotτEi vs. Ti no−α , Q = 5

ptotτEi vs. Ti no−α , Q = 40

Power Law Is Implemented for τE.
The ITER database power law fit was implemented in our
Mathematica notebooks:

τE IPB98 = 0.145MαMIαIaαaBαB
κ

ακnαnPαPRαR

= 0.145M0.19I0.93a0.58B0.15
κ

0.78n0.41P−0.69R1.39

Test runs were made with with ITER data M = 2.5, I = 12,
a = 2, B = 5.3, κ = 1.8, R = 6.2.
Results are qualitatively similar to the previous slide (not
shown).
However, τE diverges for small power and best performance
is found for small heating power. An upper limit to τE needs
to be implemented in future work.

Analytical Formulas Approximate Lawson’s Prod-
uct In 1D
Interpolation formulas were derived to approximate Lawson’s
Product in 1D.
A fair interpolation was found for the Lawson product needed
for any Q with one-dimensional profiles:
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2
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where
Coefficient L-mode H-mode

g0 0.63−0.84/
√

Q+0.30/Q 0.83−1.1/
√

Q+0.39/Q
g1 -0.22 -0.28
g2 0.039 0.035
g3 4.5×10−3 4.9×10−3
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