Introduction	Single- and 7
 The next generation of magnetic confinement nuclear fusion experiments aims to achieve burning plasma conditions. A clear understanding of performance requirements needed to obtain burning or ignition conditions is desirable. Our knowledge to that purpose has not advanced much since Lawson's original work^a. We include additional physics in a zero- and one-dimensional analysis of the plasma to improve our estimate of plasma properties relevant to ignition and burning plasma conditions. In this presentation: Modified ignition criterion and burning-plasma analysis: Include two-fluid and α-particle effects. Compute and compare T vs. T curves for various models. Consider one-dimensional, two-parameter density and temperature profiles and evaluate their effect on ignition physics. Use the complete model to investigate physics of burning plasmas. 	 SF and The compared divided by electrons If all heat triple prophigher for higher for higher for higher for the electron become subject to the electron become subject. For Q = 5 higher. For Q = 5 higher the curve and ignition curve and ignitignition curve and ignition curve and ignition curve and ignit
Lawson's Time-Independent Analysis	confinemen
The Lawson criterion is derived starting from the single-fluid zero-dimensional energy balance: $\frac{E_{\alpha}}{16}p^{2} \frac{\langle \sigma v \rangle}{T^{2}} + S_{h} = \frac{C_{B}}{4} \frac{p^{2}}{T^{3/2}} + \frac{3}{2} \frac{p}{\tau_{E}} \left[+ \frac{3}{2} \frac{dp}{dt} \right]. (1)$ A straightforward manipulation gives the ignition criterion (with heating power $S_{h} = 0$) $p\tau_{E} = 2nT\tau_{E} \geq \frac{T^{2}}{\frac{E_{\alpha}}{24} < \sigma v > -\frac{C_{B}}{6}T^{1/2}}.$ (2)	 For each performance of the products. Heating port between ion the <i>Q</i> = 10 Poorly confinered. Results dep confinement.
The Starting Equations Are the Time-Dependent Three-Fluid Energy Conservation Equations	One-Dimens
The starting point is the system of zero-dimensional conservation equations for the three species, ions, electrons and α s: $\frac{3}{2}n\frac{\partial T_i}{\partial t} = S_{hi} - \frac{3}{2}\frac{p_i}{\tau_{Ei}} + \frac{3}{2}\frac{n(T_e - T_i)}{\tau_{eq}} \qquad (3)$ $\frac{3}{2}n\frac{\partial T_e}{\partial t} = S_{he} - \frac{3}{2}\frac{p_e}{\tau_{Ee}} + \frac{n_\alpha}{\tau_\alpha}E_\alpha - C_B\frac{p_e^2}{T_e^{3/2}} + \frac{3}{2}\frac{n(T_i - T_e)}{\tau_{eq}} \qquad (4)$ $\frac{\partial n_\alpha}{\partial t} = \frac{n^2}{4} < \sigma v > -\frac{n_\alpha}{\tau_\alpha} - \frac{n_\alpha}{\tau_{E\alpha}}. \qquad (5)$ Heating terms (S_{hi} , S_{he}) are important in: 1 Transients; 2 Burning-Plasma analysis. For steady-state burning plasmas, $S_{hi} \equiv f_i \frac{5}{0}\frac{n^2}{4} < \sigma v > E_\alpha$, similar for S_{he} , f_i +	 We introduce n(r,t) = w Spatial profil simulations: than transier Ion and elect ignition analysis. Not One-Dimens
$f_e = 1.$	• For n_{α} the "e
 Analysis Is Extended to Burning Plasmas For future experiments, the burning plasma (P_α ≥ S_h, Q ≥ 5) state is more relevant than ignition. Formally, the only modification needed to extend our analysis is to have heating power on at all times. 	from $\frac{\partial n_{\alpha}(r, r, r)}{\partial t}$ and normalized • Keep in mind
"Lawson-Like"Curves for Different Qs are calculated.	$ au_{lpha} = au_{lpha} \left(n(r,t) ight)$
 OD triple product for various values of <i>Q</i> is calculated for the single-(top) and two-fluid (bottom) models. In the TF case, heating is equally divided between ions and electrons. Two-fluid curves can be lower (low Q) or higher (high Q) than single-fluid curves. 	 The ion-electron profiles, but one entered as constructed as constr

Iulti-Fluid Analysis of Burning Plasmas

