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Abstract
Analysis shows that, for tearing regimes with real frequencies, the Maxwell torque
locks the plasma to the tearing mode phase velocity[1]. Real frequencies for tearing
modes are due to diamagnetic effects or the Glasser effect[2] in the resistive-inertial
(RI) tearing regime, and it has recently been shown[3] that similar propagation
frequencies occur in the viscoresistive (VR) regime. In Ref. [1] it was suggested that
an effect like that of Ref. [4] might occur for the nonlinear behavior of RI and VR
tearing modes: namely, for large island width the sound wave might alter the
pressure gradient, causing the propagation to decrease to zero. A case was made in
Ref. [1] that this decrease in propagation frequency might reduce the effect of
locking to the phase velocity and therefore allow locking to zero velocity. We have
performed simulations with NIMROD to investigate this possibility, using cylindrical
geometry and a hollow equilibrium pressure prole. For an initial tearing unstable
equilibrium with zero pressure we have increased the pressure, causing stabilization
due to the outer region as well as favorable curvature in the layer. As pressure is
increased, real frequencies are indeed observed and the mode is stabilized. In the
presence of a small error field and plasma rotation, the maximum perturbation is
observed to be at the phase velocity of the tearing mode, and this response is most
peaked when the stable tearing mode is close to marginal stability. For increasing
error field a locking bifurcation is expected, with locking to a rotation just above the
tearing mode phase velocity. Simulations with larger error fields, or with modes
closer to marginal stability, will be shown.
[1]. Finn, A. Cole, D. Brennan, PoP Letters 22, 120701 (2015).
[2]. A. Glasser, J. Greene, J. Johnson, Phys. Fluids 18, 875 (1975).
[3]. J. Finn, A. Cole, D. Brennan, arXiv:1708.04700 (2017)
[4]. B. Scott, A. Hassam, J. Drake, Phys Fluids, 28, 275 (1985).
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For tearing regimes with real frequencies, the Maxwell
torque induced by a static error field locks the plasma
to the tearing mode phase velocity (vph)[1]

Real frequencies for tearing modes are due to diamagnetic effects or the
Glasser effect[2] in the resistive-inertial regime and as seen recently in
the viscoresistive (VR) regime[3,4].�X
In the presence of a small error field and plasma rotation, the maximum
perturbation occurs at the vph of the tearing mode, and this response
peaks when the stable tearing mode (γ ≤ 0) is close to marginal stability
⇒ Reconnection driven by an error field �X

For large island width the sound wave can flatten the pressure gradient,
slowing down the propagation (Scott effect for ω∗[5]) X–

This decrease in propagation frequency might reduce the effect of
locking to the phase velocity and allow locking to zero velocity.�
We perform simulations with NIMROD to investigate all of the above in a
large-aspect ratio periodic cylinder with a hollow pressure profile.
[1]. Finn, A. Cole, D. Brennan, PoP Letters 22, 120701 (2015).
[2]. A. Glasser, J. Greene, J. Johnson, Phys. Fluids 18, 875 (1975).
[3]. J. Finn, A. Cole, D. Brennan, arXiv:1708.04700 (2017)
[4]. Poster P2.020 by A. Cole on Monday Apr 23
[5]. B. Scott, A. Hassam, J. Drake, Phys Fluids, 28, 275 (1985).
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Review of the Glasser effect
Dispersion relation in resistive-inertial (RI) regime[2]

∆′ = ∆(γ) = (γτ)5/4 − Dm

(γτ)1/4 (1)

where Dm =
(
1− q(rt )

2
)

Ds is the Mercier parameter and
Ds = − 2rt p′(rt )

B2
θR2q′(rt )2 the Suydam parameter.

For ∆cr < ∆′ < ∆min, a pair of complex roots, i.e., γ = γr ± iωr .

For 0 < ∆′ < ∆cr , stabilization/damping, i.e., γr ≤ 0 .
Dispersion relation for Dm 6= 0 Locus of roots
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Backward propagating wave (ωr < 0) with a zero
frequency in the lab frame if plasma rotates at −ωr/k

Locus of roots and Doppler shift
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Reconnected flux |ψ̃(rt )|2 vs plasma rotation
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Maximum response of ψ̃(rt ) to static error field at v = −ωr/k with
v → −v symmetry, unlike diamagnetic drift stabilization
⇒ ω∗ does not come in a complex conjugate pair.

This ωr effect also occurs in the viscoresistive (VR) regime1.
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Quasilinear theory for locking to a static error field
Linear theory: The reconnecting flux is proportional to the error field ε:

ψ̃(rt ) ∝
ψ̃(rw )

∆′ −∆(γ + ikv)
∝ ε

∆′ −∆(γd )
(2)

∆(γd )→ ∆(ikv) – Doppler shifted from the error field (γ = 0) because of
the plasma rotation at r = rt

Plasma rotation at r = rt is determined by the
balance between:

1 The EM torque ∝ R
∫

rdr〈jzbr 〉θ by the
error field

NM ∝
|ψ(rw )|2(∆imag(ikv))

|∆′ −∆(ikv)|2 , (3)

2 Viscous torque with a momentum
source v0:

NV = N0(v − v0). (4)

NM is largest when mode is closest to
marginal stability in the complex plane: both
(∆′ −∆real (ikv))2 and ∆imag(ikv)2 small.

Quasilinear Maxwell and viscous
torques vs plasma rotation
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Fields lock to the static error field while the plasma
flow locks to a finite frequency/velocity & ωr/k .

Quasilinear Maxwell and viscous
torques vs plasma rotation
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Reconnected flux |ψ̃(rt )|2 vs plasma
rotation
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Notice one or three intersections of NM with NV (possibly two extra)
v0 controls the intercept of NV while viscosity controls its slope.
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Upward/downward bifurcations between unlocked
(high-slip) and locked states are possible.

0.0 1.0 2.0

2.5

0.0

0.5

1.0

1.5

2.0

0.5 1.5
x10-4ψ(rw)

asymptote 

0.4

0.3

0.2

0.1

0.0

-0.1

-0.4

-0.3

-0.2

-0.4 0.40.30.20.10.0-0.1-0.3 -0.2

Locked

Forbidden

High Slip

3.0

(b)

(a)

v

nc

nc

NMφ= 0

High-slip states where plasma at r = rt rotates fast enough to
shield the error field (|ψ̃(rt )| � |ψ̃(rw )|).
Locked states where the plasma rotation at r = rt is slowed down
(|ψ̃(rt )| ∼ |ψ̃(rw )|)), but not stopped: v(rt )→ ωr/k as |ψ(rw )| → ∞.
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Scott effect for nonlinear drift-tearing modes

For a large enough island width W such that k ′‖Wcs & ω∗, sound
wave flattens pressure across island.
⇒ slows diamagnetic propagation,
⇒ allows island to grow to resistive MHD level.
⇒ weakens the finite rotation locking effect: plasma locks back

to zero velocity

Question: Is there a corresponding Scott effect for the Glasser effect?
We expect the Scott effect to slow down ωr in the same fashion as ω∗
and cause the plasma to lock back to zero velocity.
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Use a periodic cylinder to simulate a large-aspect ratio
(R/rw = 10) torus

A hollow pressure (quadratic) profile to mimic favorable average
curvature in a torus (Dm → Ds < 0).
1.6 ≤ q(r) ≤ 4.4 with the rational surface located at rt = 0.38 for
(m,n) = (2,1) tearing mode.
Bz very slightly paramagnetic.
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Visco-resistive MHD is implemented with the NIMROD
multi-fluid framework

∂n
∂t

+∇ · (nv) = ∇ · Dn∇n, (5)

ρ

(
∂v
∂t

+ v · ∇v
)

= J× B−∇p −∇ ·
↔

Π, (6)

∂B/∂t = −∇× E + κ∇·B∇∇ · B, (7)

n
(
∂T
∂t

+ v · ∇T
)

= −(Γ− 1)
p
2
∇ · v−∇ · q, (8)

where E + v× B = ηJ, ρ = min, ∇× B = J, p = n(Ti + Te) = 2nT ,

q = −κ‖∇‖T − κ⊥∇⊥T and
↔

Π = µ∇v or µ
[
∇v + (∇v)T − 2

3∇ · v
]

Dimensionless: r → r/rw , B→ B/B0, and t → t/τA. vA = rw/τA

Constant and uniform diffusivities but anisotropic heat conduction.
The equilibrium is kept static in time: introduces a momentum
source.
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Typical simulation parameters

- Aspect ratio, R/rw = 10, rw = 1 with 1.6 ≤ q(r) ≤ 4.4
- β ≤ 0.002
- Initial Bz(r = 0) ≡ B0 = 1 such that vA = 107 m/s for a chosen ρ.
- Lundquist number S = τR/τA = 105; Prandtl number: Pr = 0.1
- (m,n) = (2,1) error field with 10−7 ≤ ε ≤ 10−3(?)

- Equilibrium (axial) flow: v0 ≤ 50 km/s (= 0.0046vA).
- Glasser phase speed: ωr/k = 19.2 km/s
- Dn = 0.05 < κ⊥ = 0.1 < µ = 10.9 < η = 109 < κ∇·B = 104 <
κ‖ = 105 with κ‖/κ⊥ = 106

- Coarse poloidal resolution: m = 0,1,2. Convergence checked up
to 11 modes for a few cases.

- Time asymptotic state for nonlinear simulations takes several τR
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Linear simulations show real frequency and
stabilization of the (2,1) tearing mode as β increases
(v0 = 0)

Glasser oscillations: ωr > 0 (green) for β > 10−4.
The mode becomes damped: γ < 0 (blue) for β ≥ 0.0018.
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Linear simulations show maximum reconnected flux
|ψ̃(rt)| when plasma rotates at the phase speed
v0 = ±ωr/k

v → −v symmetry.
Values normalized to their respective maxima for each trace.
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Weakening of the Glasser effect observed in nonlinear
simulations for error field ε & 10−5

ε provides the means to control the island width W because
W ∝ |ψ̃(rt )|1/2 ∝ |ψ̃(rw )|1/2 and ε = imψ̃(rw )/rw :
Flattening of axisymmetric pressure and an m = 2 island are
observed.
pressure profile (ε = 10−4) Helical flux χ contours (ε = 10−4)

Scott parameter: k ′‖Wcs/ωr = 1.6 for ε = 10−4
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Nonlinear simulations to look for bifurcation/locking to
finite frequency

Order parameters: ψ(rt ) and v(rt )

Control parameters: ψ(rw ) (or ε) and v0

Simulations at very small error fields show NO locking, because
- Nv >>> NM or
- v0 is still too small (à la bifurcation diagram of Slide 8)
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Summary

Periodic cylinder with R/rw = 10 with
- a hollow pressure profile to model average good curvature
- an equilibrium unstable to (2,1) tearing mode at r = 0.38

γ → γ ± iωr with γ ≤ 0 at β ≥ 0.0018 due to the Glasser effect.
Resonant response to a static error field observed for v0 = ±ωr/k .

- A pair of complex conjugate roots lead to v → −v symmetry.
- No such symmetry for ω∗.

Quasilinear theory: Plasma locks to finite velocity under the
influence of EM and viscous torques.
Scott effect: when the island width W is large, the pressure is
flattened across the island and ω∗ slowed down.
⇒ Plasma locks back to zero velocity
⇒ Q: Does the Scott effect also slow down ωr and lock to 0 velocity?

Flattening of the pressure is observed for ε & 10−5.
Still looking for the locked state.
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