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Vertical Displacement Events (VDEs) result from
axisymmetric ideal instability with respect to vertical
positioning.

A VDE occurs when the plasma moves uncontrollably away
from its equilibrium position into the containment vessel.

Below is a series of snapshots (in Alfvén times) of the pressure
(color) and poloidal flux (black lines) during a VDE in NIMROD.
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VDEs have the potential to cause damage to tokamaks.

VDEs can cause large wall forces
through the interaction of induced
currents and magnetic fields that
damage the experiment.

Several codes have calculated wall
forces during VDE events, and
there is still discussion about how
the wall forces are mediated by the
plasma-wall system.
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We are applying the NIMROD code to help study integrated
effects of VDEs.

In these calculations, NIMROD is using a visco-resistive MHD
model.

NIMROD solves for the primitive fields (n, T , B, V, etc.); it
does not use potentials.

For spatial resolution, NIMROD uses spectral elements for the
poloidal plane, and a Fourier decomposition in the periodic
direction.

NIMROD has two main time advance routines:

a (time-split) semi-implicit predictor/corrector algorithm.
a time-centered implicit leapfrog algorithm.

K.J. Bunkers, C.R. Sovinec VDEs



NIMROD solves the non-linear MHD equations.
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A case from NSTX shared by M3DC1is being used to
benchmark VDE behavior.

The benchmark uses a
rectangular mesh for the
plasma and vacuum regions.
The rectangular corners are of
concern in NIMROD.

The equilibrium is calculated
from an EFIT file and re-solved
with NIMEQ onto a NIMROD

mesh.

Pressure contours with poloidal flux
contour lines superimposed.
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In the first attempt, NIMROD and M3DC1give different
results for VDE linear growth rates.

The linear growth rates
differed1from those given by
M3DC1for Tedge = 14.6 eV.

The cause of the difference
between the observed
growth rates is still
unknown.

We are investigating
whether the re-entrant
corners are causing
problems in the outer
solution.

1M3DC1data is from Krebs, private communication
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The eigenfunctions for the linear calculations qualitatively
agree.

The
eigenfunctions
are similar for
NIMROD (top)
and
M3DC1(bottom)2.
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2M3DC1data is from Krebs, private communication
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A flux aligned grid with conformal wall is helping us isolate
the corner issue.

The NSTX equilibrium is put into a
flux aligned mesh using the same
EFIT file as for the square
calculations.

The plasma region ψ looks like the
image to the top right.

These calculations have appeared
to be VDE stable.

One possible reason is the
conducting wall boundary
condition can not be put as far
away from the resistive wall as in
the square cases.
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Sensitivity in the boundary conditions for VDE calculations
suggests boundary modeling is important for VDE physics.

This shows a computation of a VDE with and without
insulating boundary conditions on temperature.
The computation with Dirichlet conditions on T loses
approximately 20% of its thermal energy over the first 1400τA.

Evolution of plasma current
is sensitive to boundary
conditions on T .

Contours of T with J vectors overlaid at
t = 1410 with Dirichlet (left) and insulating
(right).
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More detailed modeling of sheath physics provides a set of
boundary conditions that can be put in an MHD form.

A sheath boundary condition model has been successfully
developed for a fluid turbulence code.3

The boundary conditions are formulated as being at the
entrance to the magnetic presheath. They include a
Chodura-Bohm velocity boundary condition.

The edge can be divided into presheath, magnetic presheath
(MPS), and sheath regions.

Figure of edge from Stangeby’s The Plasma Boundary of Magnetic Fusion Device (2000).

3Loizu, Ricci, Phys. Plasm. 19 (2012) 122307
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We can adopt the approach used by Loizu to find the
boundary conditions.

In the Loizu approach, the ion drift approximation (IDA)
( d
dt � Ωi ) is used to reduce the boundary conditions into an

MHD usable form with the ion and electron momentum
equations and continuity.

The IDA breaks down in the MPS and when formulated in a
matrix equation, the determinant equals zero at the MPS
entrance.
An ordering is imposed where derivatives along the wall are
assumed to be order ε = ρs/L� 1 with ρs the ion sound
speed Larmor radius.

MHD boundary conditions are deduced from the MPS
entrance relations.

Similar arguments of the breakdown of quasineutrality at the
Debye sheath entrance can be used to find the Bohm
criterion.4

4Riemann, J. Phys. D: Applied Phys. 24 (1991) 4 493
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The singularities of the matrix equation yield the boundary
conditions.

We rewrite the continuity, ion momentum, and electron
momentum equations into matrix form Mx = S where S
represent sources that vanish as we get into the magnetic
presheath. V is the ion flow velocity, with the geometry shown
below assuming adiabatic ions. n̂ · V n sinα − cosα

B
∂n
∂x

γTi sinα nmi n̂ · V n
(
qi sinα− mi

B cosα∂Vz
∂x

)
Te sinα 0 nqe sinα

 n̂ · ∇n
n̂ · ∇Vz

n̂ · ∇φ

 = S

det M = 0 then yields a relation that allows us to solve for V.

K.J. Bunkers, C.R. Sovinec VDEs



The boundary equations that are derived are adapted to
NIMROD.

In the zeroth order (ε = ρs/L) cold ion
approximation , with V the ion velocity and
cs =

√
Te/mi the sound speed

n̂ · Vwall = cs n̂ · b̂wall , n̂ · ∇Te = 0

Te

nq
n̂ · ∇n = n̂ · ∇φ = −mics

q
n̂ · ∇(V · b̂) ∼ 0

n̂ · J = qncs sinα(1− exp[Λ− η])

Here Λ = ln( mi

2πme
) and η is the normalized

potential relative to the wall.

Strauss5has considered sheath compatible
boundary conditions and implemented a
Neumann velocity boundary condition with
effects similar to this Chodura-Bohm criterion.

Magnetic presheath
coordinate directions.

5Strauss, Phys. Plasm. 21 (2014) 032506.
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A generic tokamak equilibrium is used to demonstrate the
magnetic presheath boundary condition.

The figure on right shows the
calculation area and pressure of the
configuration.

This begins from a double-null
vertically symmetric equilibrium.

This calculation was done without
a resistive wall.

The equilibrium is vertically
stable.
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Applying the Bohm criterion with insulating temperature
boundary conditions on the upper and lower boundaries
leads to different behavior in current and internal energy.

The current and internal energy began to diverge after
approximately 1000τA. The internal energy separates much more
than the current.
In the figure MPS is the case where the Bohm criterion is applied
on the top and bottom, and None applies to the no-slip velocity
boundary condition .
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The flow velocity is also increased in the MPS boundary
condition case.

The velocity is primarily in the φ direction, but primarily in
the Z direction in a poloidal cross section.

The flows are approximately 10 times larger in the MPS
applied case after 1200 Alfvén times.

No MPS boundary conditions. MPS boundary conditions.
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The flow velocity is smoother towards the edges with this
boundary condition.

This is only enforcing b̂ · V = cs at the wall with insulating
temperature boundary conditions.

The number density is diffused, and is not advected out of the
system.

No MPS boundary conditions at
t ≈ 1200τA.

MPS boundary conditions at
t ≈ 1200τA.
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The toroidal component of flow velocity is also increased in
the MPS boundary condition case.

Vφ shows similar behavior to Vz with a 10-fold increase in
velocity over the normal boundary conditions.

No MPS boundary conditions at
t ≈ 1200τA.

MPS boundary conditions at
t ≈ 1200τA.
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Conclusions

A VDE benchmark between NIMROD and M3DC1is making
progress, but concerns with re-entrant corners in the outer
region has slowed progress.

A simple magnetic presheath (MPS) boundary condition has
been tested in a tokamak equilibrium.

The simple MPS condition has qualitative and quantitative
differences from the usual no-slip and E×B velocity boundary
conditions.
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Future Work

Get the sheath boundary conditions working on a realistic
unstable VDE case.

Implement the J term on the boundary.
Use more than first-order accurate terms in the boundary
condition.
Implement an electron temperature only insulating condition.

Compare the linear VDE benchmark without square corners
for the vacuum wall with M3DC1.

Create a temperature offset for better comparisons with
M3DC1for linear and nonlinear benchmarks.

Fix the issue with the re-entrant corners.
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