Investigation of Boundary Conditions for Vertical Displacement Events with NIMROD Sherwood 2018

> K.J. Bunkers & C.R. Sovinec University of Wisconsin-Madison

Vertical Displacement Events (VDEs) result from axisymmetric ideal instability with respect to vertical positioning.

- A VDE occurs when the plasma moves uncontrollably away from its equilibrium position into the containment vessel.
- Below is a series of snapshots (in Alfvén times) of the pressure (color) and poloidal flux (black lines) during a VDE in NIMROD.



K.J. Bunkers, C.R. Sovinec VDEs

- VDEs can cause large wall forces through the interaction of induced currents and magnetic fields that damage the experiment.
- Several codes have calculated wall forces during VDE events, and there is still discussion about how the wall forces are mediated by the plasma-wall system.



#### We are applying the NIMROD code to help study integrated effects of VDEs.

- In these calculations, NIMROD is using a visco-resistive MHD model.
- NIMROD solves for the primitive fields (*n*, *T*, **B**, **V**, etc.); it does not use potentials.
- For spatial resolution, NIMROD uses spectral elements for the poloidal plane, and a Fourier decomposition in the periodic direction.
- NIMROD has two main time advance routines:
  - a (time-split) semi-implicit predictor/corrector algorithm.
  - a time-centered implicit leapfrog algorithm.

#### NIMROD solves the non-linear MHD equations.

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = \nabla \cdot (D_n \nabla n - D_h \nabla \nabla^2 n) \qquad \begin{array}{l} \text{Continuity with} \\ \text{diffusive} \\ numerical fluxes \end{array}$$

$$mn\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) \mathbf{V} = \mathbf{J} \times \mathbf{B} - 2\nabla(nT) - \nabla \cdot \overrightarrow{\mathbf{\Pi}} \quad \begin{array}{l} \text{flow} \\ \text{evolution} \end{array}$$

$$\frac{3}{2}n\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) T = -nT\nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q} \qquad \begin{array}{l} \text{temperature} \\ \text{evolution} \end{array}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times (\eta \mathbf{J} - \mathbf{V} \times \mathbf{B}) + \kappa_{\mathrm{B}} \nabla \nabla \cdot \mathbf{B} \qquad \begin{array}{l} \text{Faraday's/Ohm's} \\ \text{Law with numerical} \\ \text{error control} \end{array}$$

 $\mu_0 \mathbf{J} = \mathbf{\nabla} \times \mathbf{B}$ 

low- $\omega$  Ampere's law

## A case from NSTX shared by M3DC<sup>1</sup> is being used to benchmark VDE behavior.

- The benchmark uses a rectangular mesh for the plasma and vacuum regions. The rectangular corners are of concern in NIMROD.
- The equilibrium is calculated from an EFIT file and re-solved with NIMEQ onto a NIMROD mesh.





Pressure contours with poloidal flux contour lines superimposed.

## In the first attempt, NIMROD and M3DC<sup>1</sup>give different results for VDE linear growth rates.

- The linear growth rates differed<sup>1</sup> from those given by M3DC<sup>1</sup> for T<sub>edge</sub> = 14.6 eV.
- The cause of the difference between the observed growth rates is still unknown.
  - We are investigating whether the re-entrant corners are causing problems in the outer solution.



<sup>1</sup>M3DC<sup>1</sup>data is from Krebs, private communication

# The eigenfunctions for the linear calculations qualitatively agree.

 The eigenfunctions are similar for NIMROD (top) and M3DC<sup>1</sup>(bottom)<sup>2</sup>.



<sup>2</sup>M3DC<sup>1</sup>data is from Krebs, private communication

K.J. Bunkers, C.R. Sovinec

#### A flux aligned grid with conformal wall is helping us isolate the corner issue.

- The NSTX equilibrium is put into a flux aligned mesh using the same EFIT file as for the square calculations.
- The plasma region  $\psi$  looks like the image to the top right.
- These calculations have appeared to be VDE stable.
  - One possible reason is the conducting wall boundary condition can not be put as far away from the resistive wall as in the square cases.



## Sensitivity in the boundary conditions for VDE calculations suggests boundary modeling is important for VDE physics.

- This shows a computation of a VDE with and without insulating boundary conditions on temperature.
- The computation with Dirichlet conditions on *T* loses approximately 20% of its thermal energy over the first 1400*τ<sub>A</sub>*.





Evolution of plasma current is sensitive to boundary conditions on T.

Contours of T with J vectors overlaid at t = 1410 with Dirichlet (left) and insulating (right).

## More detailed modeling of sheath physics provides a set of boundary conditions that can be put in an MHD form.

- A sheath boundary condition model has been successfully developed for a fluid turbulence code.<sup>3</sup>
- The boundary conditions are formulated as being at the entrance to the magnetic presheath. They include a Chodura-Bohm velocity boundary condition.
  - The edge can be divided into presheath, magnetic presheath (MPS), and sheath regions.



Figure of edge from Stangeby's The Plasma Boundary of Magnetic Fusion Device (2000).

<sup>3</sup>Loizu, Ricci, Phys. Plasm. **19** (2012) 122307

K.J. Bunkers, C.R. Sovinec VDEs

#### We can adopt the approach used by Loizu to find the boundary conditions.

- In the Loizu approach, the ion drift approximation (IDA)  $\left(\frac{\mathrm{d}}{\mathrm{d}t} \ll \Omega_i\right)$  is used to reduce the boundary conditions into an MHD usable form with the ion and electron momentum equations and continuity.
  - The IDA breaks down in the MPS and when formulated in a matrix equation, the determinant equals zero at the MPS entrance.
  - An ordering is imposed where derivatives along the wall are assumed to be order  $\epsilon=\rho_s/L\ll 1$  with  $\rho_s$  the ion sound speed Larmor radius.
- MHD boundary conditions are deduced from the MPS entrance relations.
- Similar arguments of the breakdown of quasineutrality at the Debye sheath entrance can be used to find the Bohm criterion.<sup>4</sup>

<sup>4</sup>Riemann, J. Phys. D: Applied Phys. 24 (1991) 4 493

We rewrite the continuity, ion momentum, and electron momentum equations into matrix form Mx = S where S represent sources that vanish as we get into the magnetic presheath. V is the ion flow velocity, with the geometry shown below assuming adiabatic ions.

$$\begin{bmatrix} \hat{\mathbf{n}} \cdot \mathbf{V} & n \sin \alpha & -\frac{\cos \alpha}{B} \frac{\partial n}{\partial x} \\ \gamma T_i \sin \alpha & n m_i \hat{\mathbf{n}} \cdot \mathbf{V} & n \left( q_i \sin \alpha - \frac{m_i}{B} \cos \alpha \frac{\partial V_z}{\partial x} \right) \\ T_e \sin \alpha & 0 & n q_e \sin \alpha \end{bmatrix} \begin{bmatrix} \hat{\mathbf{n}} \cdot \nabla n \\ \hat{\mathbf{n}} \cdot \nabla V_z \\ \hat{\mathbf{n}} \cdot \nabla \phi \end{bmatrix} = \mathbf{S}$$

• det  $\mathbf{M} = 0$  then yields a relation that allows us to solve for  $\mathbf{V}$ .

#### The boundary equations that are derived are adapted to NIMROD.

• In the zeroth order ( $\epsilon = \rho_s/L$ ) cold ion approximation , with **V** the ion velocity and  $c_s = \sqrt{T_e/m_i}$  the sound speed

$$\begin{bmatrix} \hat{\mathbf{n}} \cdot \mathbf{V}_{\text{wall}} = c_s \hat{\mathbf{n}} \cdot \hat{\mathbf{b}}_{\text{wall}} \end{bmatrix}, \quad \hat{\mathbf{n}} \cdot \nabla T_e = 0$$
$$\frac{T_e}{nq} \hat{\mathbf{n}} \cdot \nabla n = \hat{\mathbf{n}} \cdot \nabla \phi = -\frac{m_i c_s}{q} \hat{\mathbf{n}} \cdot \nabla (\mathbf{V} \cdot \hat{\mathbf{b}}) \sim 0$$
$$\hat{\mathbf{n}} \cdot \mathbf{J} = qnc_s \sin \alpha (1 - \exp[\Lambda - \eta])$$

- Here  $\Lambda = \ln(\frac{m_i}{2\pi m_e})$  and  $\eta$  is the normalized potential relative to the wall.
- Strauss<sup>5</sup>has considered sheath compatible boundary conditions and implemented a Neumann velocity boundary condition with effects similar to this Chodura-Bohm criterion.

<sup>5</sup>Strauss, Phys. Plasm. **21** (2014) 032506.



Magnetic presheath coordinate directions.

#### A generic tokamak equilibrium is used to demonstrate the magnetic presheath boundary condition.

- The figure on right shows the calculation area and pressure of the configuration.
- This begins from a double-null vertically symmetric equilibrium.
- This calculation was done without a resistive wall.
  - The equilibrium is vertically stable.



Applying the Bohm criterion with insulating temperature boundary conditions on the upper and lower boundaries leads to different behavior in current and internal energy.

- The current and internal energy began to diverge after approximately  $1000\tau_A$ . The internal energy separates much more than the current.
- In the figure MPS is the case where the Bohm criterion is applied on the top and bottom, and None applies to the no-slip velocity boundary condition.



#### The flow velocity is also increased in the MPS boundary condition case.

- The velocity is primarily in the φ direction, but primarily in the Z direction in a poloidal cross section.
- The flows are approximately 10 times larger in the MPS applied case after 1200 Alfvén times.



No MPS boundary conditions.

MPS boundary conditions.

#### The flow velocity is smoother towards the edges with this boundary condition.

- This is only enforcing  $\hat{\mathbf{b}} \cdot \mathbf{V} = c_s$  at the wall with insulating temperature boundary conditions.
- The number density is diffused, and is not advected out of the system.



No MPS boundary conditions at  $t \approx 1200 \tau_A$ .



#### The toroidal component of flow velocity is also increased in the MPS boundary condition case.

•  $V_{\phi}$  shows similar behavior to  $V_z$  with a 10-fold increase in velocity over the normal boundary conditions.



No MPS boundary conditions at  $t \approx 1200 \tau_A$ .

MPS boundary conditions at  $t \approx 1200 \tau_A$ .

K.J. Bunkers, C.R. Sovinec

- A VDE benchmark between NIMROD and M3DC<sup>1</sup> is making progress, but concerns with re-entrant corners in the outer region has slowed progress.
- A simple magnetic presheath (MPS) boundary condition has been tested in a tokamak equilibrium.
- The simple MPS condition has qualitative and quantitative differences from the usual no-slip and  $\mathbf{E} \times \mathbf{B}$  velocity boundary conditions.

- Get the sheath boundary conditions working on a realistic unstable VDE case.
  - $\bullet\,$  Implement the J term on the boundary.
  - Use more than first-order accurate terms in the boundary condition.
  - Implement an electron temperature only insulating condition.
- Compare the linear VDE benchmark without square corners for the vacuum wall with M3DC<sup>1</sup>.
  - Create a temperature offset for better comparisons with M3DC<sup>1</sup> for linear and nonlinear benchmarks.
- Fix the issue with the re-entrant corners.