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Reduced MHD formalism with parallel dynamics elucidates
origin of the Glasser Effect

In this poster we show a streamlined derivation of the Glasser effect in
the resistive-inertial (RI) and visco-resistive (VR) tearing regimes.
These calculations include parallel dynamics but neglect both the
divergence of the E x B drift V- v, , and perpendicular resistivity 1 .
The purpose of this derivation is threefold:

(1) to show that these two last effects are not necessary to obtain the
qualitative results, i.e. complex roots and stabilization for
positive constant-y matching parameter A/,

(2) to illustrate this simple approach for use in other tearing regimes,

(3) to exploit the simplicity of this model to elucidate the physics.



Applications of finite frequency tearing layers:
EF locking and RWM

» We recently demonstrated [1] that the Maxwell torque on the
plasma in the presence of an applied error field is modified
significantly for tearing modes having real frequencies near
marginal stability.

» Finally, we find that the lowering of the threshold for
destabilization of the resistive wall mode can be much more
pronounced than observed for tearing modes in Ref. [2].

> In all regimes studied in this poster, the existence of finite
frequency tearing modes in the plasma frame is related to nearby
electrostatic resistive interchange modes with complex
frequencies.

References: [1] J. M. Finn, A. J. Cole, and D. P. Brennan, PoP (Letters) 22,
120701 (2015). [2] J. M. Finn and R. A. Gerwin, PoP 3, 2344 (1996)



Review of TModes and RI regime with parallel dynamics -1

Spontaneous modes

» TM are ’slow’ growing: obey marginally stable (no inertia or viscosity)
ideal MHD everywhere except near boundary layer at k- By = 0

» Dispersion relation from asymptotic matching logarithmic derivative in
flux function across tearing layer
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RI regime with parallel dynamics -11
Sound speed parameter
B = 02522/ 2 BE = B3 QM2
Normalized Suydam (Mercier in toroidal) parameter
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RI regime with parallel dynamics - Results I

» Non monotonic behavior of tearing layer matching parameter
(leading to complex roots) caused by presence of poles related to
electrostatic resistive interchange modes.

» Increasing sound speed (bg) leads to coalescence of poles at
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VR regime with parallel dynamics -1

We replace Eq. (1) with
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as in the RI regime E = —2m?B3p' /yB3r = Eo/Y. As usual in the
VR regime we ﬁnd 8% =nu/a?.
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VR regime with parallel dynamics -11
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For unfavorable curvature (Gp > 0), the symmetry Gy — — G,

® — — Q shows that similar poles occur, but they correspond to
growing modes when the roots for Gg < 0 are damped.
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VR regime with parallel dynamics -Results I

Locus of roots, real frequency at marginal stability, and A’ > 0
(Glasser Effect) in viscous tearing regime. @ — Q + Qg to simulate
perpendicular resistivity.

Non monotonic just as in GGJ-RL
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VR regime with parallel dynamics -Results 11

Non monotonic behavior of tearing layer matching parameter (leading
to complex roots) caused by poles of resistive interchange modes
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VR regime with parallel dynamics -Results I1I

Resistive interchange poles move into sound wave continuum as
sound speed increases.
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Review of driven tearing modes and net Maxwell Torque on
plasma

EF problem: driven response in stable plasma
» Consider static single harmonic (k) 3D field resonant on single surface;
Replace v — iw, — ikV
» EF induces net electromagnetic (Maxwell) force only on resonant
surface
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with §,, the error field strength at vessel wall, etc

» Model of EF locking: anomal. p resists Fp,: Fr + Fy = 0— leads to
bifurcation, hysteresis



Calculating the reconnected flux from the error field

x

Y(r) = aadr(r) + oga(r)
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Steady-state: Yy = Y+ ikv — ikv
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Dispersion relation in the denominator, as usual.



RI-GGJ: a familiar regime with finite frequency modes
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Driven EF problem sweeps along imaginary axis, distance to poles
in ; influences force amplitude
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» Typical of inhomogeneous
solutions: dispersion relation
in denominator

» Zeros of Im[A(ikV/)] at locus
crossings (and V = 0)
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EF Maxwell force zero and largest magnetic flux observed when
surface flows at rate V ~ @, /k—-RI results
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Main result: Fields are locked to static error field, plasma flow
locked to finite value V > ®, /k—RI regime

Steady state force balance Fp, + F, = 0, with Fy, o< (Vo — V) viscous force

across layer and
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Different ways to induce bifurcation. Decreasing p equiv. to increasing y/;

> Large u: 3 roots (2 stable, 1
unstable)

> Intermediate [l intersects at
V2 o /k.

» Driven B field locked to static EF

> Flow locked to V = o, /k; not
V 2 0. Asymptote V - 0.

> For very small it two other states
are possible.
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EF Maxwell force zero VR regime

» Large u: 3 roots (2 stable, 1
b =0.150, G, = -0.80

unstable)
> Intermediate [ intersects at
V2o /k
> Driven B field locked to 2 b
static EF XXX
> Flow locked to V' 2> @, /k; Bl 5
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EF force balance exhibits bifurcation to a high reconnected flux,

low flow “locked” state—RI Regime

» Two different aspects of the same bifurcation behavior
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New observation: “locked” state corresponds to backward
propagating wave in plasma frame V ~ @, /k
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> Locked state occurs when Doppler shifted (+kV) driven mode interacts most
with zero frequency error field.

> Asymptotes to finite value V — @, /k (as 7y, & — 0 -typ. damped-driven) .

> Locked state has a backward propagating wave in the plasma frame.



Riccati equation for shooting with stiff equations
Homogeneous form of Rl equation for streamfunction
W” —x*W =0

Basic Riccati: let n = W'/W. Lie symmetry: W — AW.
Obtain reduction to first order for 7:

n/:X2_n2
As x — 400, n — £x (WKB)
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Shooting with BC W — e™**/2 as x — co: Solution with n = —x
has dn ~ e — unstable for shooting forward. Stable backwards. (

n = x has on ~ e*XZ.)



Riccati equation

W = Ae¥*/2 + Be /2 large x

Ae/2 — Be=¥*/2
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For W ~ e=**/2 integrate backwards. Also, easily formulated as
second order system

W =2 7Z=x*W n=2/W



Vector Riccati equation, n'th order
$i(x) = aydi(x)
j=1

Same Lie symmetry, n; = ¢;/dn
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Fourth order example:
P1(x) = A1 + A0 | A3 4 Age

Still works to take most stable solution and integrate n; backwards.




Application to tearing layers — resistive MHD with parallel
dynamics

. Equations for vorticity, flux, pressure, parallel velocity. Four
equations, each with a k) = kﬁx. No constant 1) approx.

. Fourier transform x — k = fourth order system.

. Resistive inertial (RI) and viscoresistive (VR): same order in k.
Inclusion of classical diffusion 7, p"(x) — —n1 k?p(k) ... no change
in order but removes the parallel dynamics continuum.

. Integrate backwards in k using Riccati to get A’ matching
condition. ¢ — xP1, xP2 as x — 0o —> <;3(k) — k=Pl P2l
as k—0

. Preliminary results: agreement with constant- 1 results for small
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