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Reduced MHD formalism with parallel dynamics elucidates
origin of the Glasser Effect

In this poster we show a streamlined derivation of the Glasser effect in
the resistive-inertial (RI) and visco-resistive (VR) tearing regimes.
These calculations include parallel dynamics but neglect both the
divergence of the E ×B drift ∇ ·v⊥, and perpendicular resistivity η⊥.
The purpose of this derivation is threefold:

(1) to show that these two last effects are not necessary to obtain the
qualitative results, i.e. complex roots and stabilization for
positive constant-ψ matching parameter ∆′,

(2) to illustrate this simple approach for use in other tearing regimes,

(3) to exploit the simplicity of this model to elucidate the physics.



Applications of finite frequency tearing layers:
EF locking and RWM

I We recently demonstrated [1] that the Maxwell torque on the
plasma in the presence of an applied error field is modified
significantly for tearing modes having real frequencies near
marginal stability.

I Finally, we find that the lowering of the threshold for
destabilization of the resistive wall mode can be much more
pronounced than observed for tearing modes in Ref. [2].

I In all regimes studied in this poster, the existence of finite
frequency tearing modes in the plasma frame is related to nearby
electrostatic resistive interchange modes with complex
frequencies.

References: [1] J. M. Finn, A. J. Cole, and D. P. Brennan, PoP (Letters) 22,
120701 (2015). [2] J. M. Finn and R. A. Gerwin, PoP 3, 2344 (1996)



Review of TModes and RI regime with parallel dynamics -I

Spontaneous modes
I TM are ’slow’ growing: obey marginally stable (no inertia or viscosity)

ideal MHD everywhere except near boundary layer at k ·B0 = 0
I Dispersion relation from asymptotic matching logarithmic derivative in

flux function across tearing layer
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RI regime with parallel dynamics -II

Sound speed parameter
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Layer equation for normalized stream function
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RI regime with parallel dynamics - Results I

I Non monotonic behavior of tearing layer matching parameter
(leading to complex roots) caused by presence of poles related to
electrostatic resistive interchange modes.

I Increasing sound speed (b0) leads to coalescence of poles at
origin
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VR regime with parallel dynamics -I

We replace Eq. (1) with
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as in the RI regime E =−2m2B2
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VR regime with parallel dynamics -II
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For unfavorable curvature (G0 > 0), the symmetry G0→−G0,
Q→−Q shows that similar poles occur, but they correspond to
growing modes when the roots for G0 < 0 are damped.



VR regime with parallel dynamics -Results I

Locus of roots, real frequency at marginal stability, and ∆′c > 0
(Glasser Effect) in viscous tearing regime. Q→ Q +Q0 to simulate
perpendicular resistivity.
Non monotonic just as in GGJ-RI.



VR regime with parallel dynamics -Results II

Non monotonic behavior of tearing layer matching parameter (leading
to complex roots) caused by poles of resistive interchange modes



VR regime with parallel dynamics -Results III

Resistive interchange poles move into sound wave continuum as
sound speed increases.



Review of driven tearing modes and net Maxwell Torque on
plasma

EF problem: driven response in stable plasma
I Consider static single harmonic (k) 3D field resonant on single surface;

Replace γ− iωr → ikV
I EF induces net electromagnetic (Maxwell) force only on resonant

surface

Fm ∝−|ψ̃t |2 Im [∆(ikV )] ... ψ̃t ∝
ψ̃w

∆′−∆(ikV )
,

with ψ̃w the error field strength at vessel wall, etc

I Model of EF locking: anomal. µ⊥ resists Fm: Fm +Fµ = 0→ leads to
bifurcation, hysteresis



Calculating the reconnected flux from the error field
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ψ̃(r) = α1φ1(r) + α2φ2(r)
[ψ̃ ′]rt = ∆(γd )ψ̃(rt) γd = γ + ikv

α1∆′+ l21α2 = ∆(γd )α1 α2 = ψ̃(rw )

Steady-state: γd = γ + ikv → ikv

ψ̃(rt) = α1 =− l21ψ̃(rw )

∆′−∆(ikv)

Dispersion relation in the denominator, as usual.



RI-GGJ: a familiar regime with finite frequency modes

Lr ∆′ = 2.12
[

(γτ− iτωr )5/4− πD
4(γτ− iτωr )1/4

]
... D ∼−p′(1−q2) < 0

∆(γτ) vs. γτ

complex roots if Lr ∆′ < ∆min ,

stabilized if Lr ∆′ < ∆c

Locus of roots for RI with fixed

D < 0, varying ∆′

Lr ∝ S−1/3 and τ ∼ S1/3



Driven EF problem sweeps along imaginary axis, distance to poles
in ψ̃t influences force amplitude

Fm ∝−|ψ̃t |2 Im [∆(ikV )] ... ψ̃t ∝
ψ̃w

∆′−∆(ikV )

I Typical of inhomogeneous
solutions: dispersion relation
in denominator

I Zeros of Im [∆(ikV )] at locus
crossings (and V = 0)

I Plasma conditions determine
appropriate ∆, layer regime

I Note: two-fluid regimes lack
symmetry in ±ωr , ω∗i ,e



EF Maxwell force zero and largest magnetic flux observed when
surface flows at rate V ∼ ωr/k—-RI results

Fm ∝−|ψ̃t |2 Im [∆(ikV )]∼− ∆i (ikV τ)

(Lr ∆′−∆r (ikV τ))2 + ∆i (ikV τ)2

Numerator = 0 where ∆i = 0; denominator minimum nearby, both ωr ≈ kV

I New: pronounced peaks in
|ψ(rt)|2 off axis, Lr ∆′ = 0.25

I New: zero of Fm at finite value
of V̂ !



Main result: Fields are locked to static error field, plasma flow
locked to finite value V & ωr/k—RI regime

Steady state force balance Fm +Fµ = 0, with Fµ ∝ µ(V0−V ) viscous force
across layer and

Fm ∝− ∆i (ikV τ)

(Lr ∆′−∆r (ikV τ))2 + ∆i (ikV τ)2

Different ways to induce bifurcation. Decreasing µ equiv. to increasing ψ̃t

I Large µ: 3 roots (2 stable, 1
unstable)

I Intermediate µ intersects at
V & ωr/k .

I Driven B field locked to static EF
I Flow locked to V & ωr/k; not

V & 0. Asymptote V 9 0.
I For very small µ two other states

are possible.



EF Maxwell force zero VR regime

I Large µ: 3 roots (2 stable, 1
unstable)

I Intermediate µ intersects at
V & ωr/k .

I Driven B field locked to
static EF

I Flow locked to V & ωr/k;
not V & 0. Asymptote
V 9 0.

I For very small µ two other
states are possible.



EF force balance exhibits bifurcation to a high reconnected flux,
low flow “locked” state—RI Regime

I Two different aspects of the same bifurcation behavior
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I Fixed initial velocity V̂0,
increasing ψ̃(rw )

I Fixed ψ̃(rw ), decreasing V̂0



New observation: “locked” state corresponds to backward
propagating wave in plasma frame V ∼ ωr/k

I Locked state occurs when Doppler shifted (+kV ) driven mode interacts most
with zero frequency error field.

I Asymptotes to finite value V → ωr/k (as γ, µ → 0 -typ. damped-driven) .
I Locked state has a backward propagating wave in the plasma frame.



Riccati equation for shooting with stiff equations

Homogeneous form of RI equation for streamfunction

W ′′ − x2W = 0

Basic Riccati: let η = W ′/W . Lie symmetry: W → λW .
Obtain reduction to first order for η:

η′ = x2 − η2

As x → +∞, η → ±x (WKB)

η = ±x − 1
2x

(
W ≈ x−1/2e±x2/2

)
Shooting with BC W → e−x2/2 as x →∞: Solution with η = −x
has δη ∼ ex2

– unstable for shooting forward. Stable backwards. (
η = x has δη ∼ e−x2

.)



Riccati equation

W = Aex2/2 + Be−x2/2 large x

η = x
Aex2/2 − Be−x2/2

Aex2/2 + Be−x2/2

= x
A− Be−x2

A + Be−x2

For W ∼ e−x2/2 integrate backwards. Also, easily formulated as
second order system

W ′ = Z , Z ′ = x2W η = Z/W



Vector Riccati equation, n’th order

φ′i (x) =
n∑

j=1

aijφj(x)

Same Lie symmetry, ηi = φi/φn

η′i =
φ′i
φn
− φiφ

′
n

φ2
n

= aijηj − anjηiηj

i = n trivial (ηn = 1 ) reduction of order by one.

Fourth order example:

φ1(x) = A1eα1xp1 + A2eα2xp2 + A3eα3xp3 + A4eα4xp4

Still works to take most stable solution and integrate ηi backwards.



Application to tearing layers – resistive MHD with parallel
dynamics

. Equations for vorticity, flux, pressure, parallel velocity. Four
equations, each with a k|| = k ′||x . No constant ψ approx.
. Fourier transform x → k =⇒ fourth order system.
k|| → k ′||∂/∂k
. Resistive inertial (RI) and viscoresistive (VR): same order in k .
Inclusion of classical diffusion η⊥p̃′′(x)→ −η⊥k2p̂(k) ... no change
in order but removes the parallel dynamics continuum.
. Integrate backwards in k using Riccati to get ∆′ matching
condition. φ̃→ xp1 , xp2 as x →∞ =⇒ φ̂(k)→ k−p1−1, k−p2−1

as k → 0
. Preliminary results: agreement with constant- ψ results for small
γ


