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Abstract

A general field theory for classical particle-field systems is developed. Compared with the stan-

dard classical field theory, the distinguish feature of a classical particle-field system is that the

particles and fields reside on different manifolds. The fields are defined on the 4D space-time,

whereas each particle’s trajectory is defined on the 1D time-axis. As a consequence, the standard

Noether’s procedure for deriving local conservation laws in space-time from symmetries is not ap-

plicable without modification. To overcome this difficulty, a weak Euler-Lagrange equation for

particles is developed on the 4D space-time, which plays a pivotal role in establishing the connec-

tions between symmetries and local conservation laws in space-time. Especially, the non-vanishing

Euler derivative in the weak Euler-Lagrangian equation generates a new current in the conservation

laws. Several examples from plasma physics are studied as special cases of the general field theory.

In particular, the relations between the rotational symmetry and angular momentum conservation

for the Klimontovich-Poisson system and the Klimontovich-Darwin system are established.
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I. INTRODUCTION

It has been widely accepted as a fundamental principle of physics that conservation laws

of particle systems or field systems can be derived from the symmetries that the systems

admit. This is the well-known Noether’s theorem [1].

Classical particle-field systems, where many particles evolve under self-generated inter-

acting fields, are often encountered in plasma physics [2–11], astrophysics [12–18], and ac-

celerator physics [19, 20]. For classical systems with particles and self-generated interacting

fields, the connections between conservation laws and symmetries have been established

only recently [21–23]. It was pointed out [22, 23] that the standard Euler-Lagrange (EL)

equation for particles are not applicable in Noether’s procedure, because the dynamics of

particles and fields are defined on manifolds with different dimensions. Instead, a weak EL

equation for particles should be used to establish the link between the conservation laws and

symmetries.

The systems discussed in [22, 23] are some special particle-field systems such as the

Klimontovich-Poisson (KP) system, the Klimontovich-Darwin (KD) system and the Klimontovich-

Maxwell (KM) system. And only a special symmetry, i.e., the space-time translation sym-

metry, is considered. In this study, we extend the theory to general symmetries in general

particle-field systems. The generalized theory can be also viewed as a generalized version

of Noether’s theorem for systems with classical particles and fields residing on different

manifolds.

As special cases and applications of the general theory, we study the time translation

symmetry of the KP system and the rotational symmetry for the KP and KD systems. The

energy conservation law of the KP system, as a result of the time translation symmetry,

agrees with the result of Ref. [22]. The relations between the rotational symmetry and

angular momentum conservation for the KP and KD systems are established. In this case,

the rotation of the vector potential for the KD system needs to be included as a part of the

symmetry that the system admits. Without the rotation of the vector potential, the rotation

of the position alone does not preserve the Lagrangian. Of course, the rotation of the vector

potential is the representation of the rotational symmetry in the fiber of the vector bundle

at each space-time location.

This paper is organized as follows. In Sec. II, we introduce the action of a general particle-
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field system. The weak EL equation is developed as necessitated by the fact that classical

particles and fields live on different manifolds. Symmetries for the system are discussed in

Sec. III, and the links between conservation laws and symmetries are established. Special

symmetries and conservation laws for the KP and KD systems are derived in Secs. IV and

V.

II. GENERAL CLASSICAL PARTICLE-FIELD SYSTEMS AND WEAK EULER-

LAGRANGE EQUATION

In general, the action of a classical particle-field system is

A =
∑

a

∫

La

(

t,Xa (t) , Ẋa (t) ,ψ (t,Xa (t))
)

dt+
∫

LF

(

t,x,ψ,
∂ψ

∂t
,
∂ψ

∂x

)

dtd3x, (1)

where Xa (t) is the trajectory of the a-th particle and ψ = ψ (t,x) is a field of scalar,

vector, or tensor type. Apparently, the dynamics of particles and fields are defined on

different manifolds. The field ψ is on the 4D space-time, whereas each particle’s trajectory

is on the 1D time-axis. Thus, the integral of the Lagrangian density LF for the field ψ is

over space-time, and the integral of Lagrangian La for the a-th particle is over time only.

Because of this fact, the action defined in Eq. (1) is not easily applicable to Noether’s

procedure of derving conservation laws in space-time. To overcome this difficult, we multiply

the first part in the right-side of Eq. (1) by the identity

∫

δad
3x = 1, (2)

where δa ≡ δ (x−Xa (t)) is the Dirac δ-function. The action A in Eq. (1) is then trans-

formed into an integral over space-time,

A =
∫

L

(

t,x,Xa (t) , Ẋa (t) ,ψ,
∂ψ

∂t
,
∂ψ

∂x

)

dtd3x, (3)

where L is the Lagrangian density of the particle-field system defined as

L =
∑

a

La + LF , La = La

(

t,Xa (t) , Ẋa (t) ,ψ (t,x)
)

δa. (4)

Now we determine how the action given by Eq. (3) varies in response to the variation of

ψ,
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δA =
∫

Eψ (L) · δψdtd3x, (5)

where the symbol “·” stands for total contraction between two tensors, and Eψ denotes the

Euler operator

Eψ (L) ≡
∂L

∂ψ
−

D

Dt





∂L

∂
(

∂ψ
∂t

)



−
D

Dx
·





∂L

∂
(

∂ψ
∂x

)



 . (6)

Applying Hamilton’s principle to Eq. (5), we immediately obtain the equation of motion for

the field,

Eψ (L) = 0 , (7)

by the arbitrariness of δψ.

Next, we derive the equation of motion for particles. There are two ways to proceed. If

we start from the action defined in Eq. (1), the variation of A induced by δXa is

δA =
∑

a

∫

[

∂La

∂Xa

−
D

Dt

(

∂La

∂Ẋa

)]

· δXadt , (8)

and the EL equation of the a-th particle is

∂La

∂Xa

−
D

Dt

(

∂La

∂Ẋa

)

= 0 . (9)

Since Eq. (9) is not a differential equation on space-time, it cannot be directly adopted in

Noether’s procedure of deriving conservation laws.

The alternative way is to use the action defined in Eq. (3), which varies as

δA =
∑

a

∫

dtδXa ·

[

∫

[

∂L

∂Xa

−
D

Dt

(

∂L

∂Ẋa

)]

d3x

]

, (10)

in response to the variation of Xa. Here, the term δXa in Eq. (10) was moved outside from

the integral
∫

[· · · ]d3x because it is independent of x. Hamilton’s principle, i.e., δA = 0 for

the variation δXa, requires the integral over the configuration space vanishes,

∫

EXa
(L) d3x = 0. (11)

Here, EXa
(L) is the Euler operator with respect to Xa,

EXa
(L) ≡

∂L

∂Xa

−
D

Dt

(

∂L

∂Ẋa

)

. (12)
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Following Refs. [22, 23], Eq. (11) is called submanifold EL equation because it is defined

only on the time-axis after integrating over the spatial dimensions. Both Eqs. (9) and (11)

describe the equation of motion of the a-th particle. The equivalence of the two equations

can be easily proved as follows,

∂La

∂Xa

−
D

Dt

(

∂La

∂Ẋa

)

=
∂

∂Xa

(
∫

Lad
3x

)

+
D

Dt

[

∂

∂Ẋa

(
∫

Lad
3x

)

]

=
∫

[

∂La

∂Xa

−
D

Dt

(

∂La

∂Ẋa

)]

d3x =
∫

EXa
(L) d3x. (13)

In Eq. (11), the vanishing integral over the configuration space suggests that the integrand

EXa
(L) could be a total divergence. We now derive such an explicit expression for it. For

the first term in EXa
(L),

∂L

∂Xa

=
∂

∂Xa

(Laδa) = La

∂δa

∂Xa

+
∂La

∂Xa

δa

= −La

Dδa

Dx
+
∂La

∂Xa

δa =
D

Dx
· (−LaI) +

∂La

∂Xa

δa, (14)

where I is the unit tensor and the identity ∂δa/∂Xa = −∂δa/∂x is used. For the second

term in EXa
(L),

−
D

Dt

(

∂L

∂Ẋa

)

= −
∂La

∂Ẋa

Dδa

Dt
−

D

Dt

(

∂La

∂Ẋa

)

δa

=
∂La

∂Ẋa

Ẋa ·
Dδa

Dx
−

D

Dt

(

∂La

∂Ẋa

)

δa =
D

Dx
·

(

Ẋa

∂La

∂Ẋa

)

−
D

Dt

(

∂La

∂Ẋa

)

δa. (15)

Thus,

EXa
(L) =

D

Dx
·

(

Ẋa

∂La

∂Ẋa

− LaI

)

+

[

∂La

∂Xa

−
D

Dt

(

∂La

∂Ẋa

)]

δa

=
D

Dx
·

(

Ẋa

∂La

∂Ẋa

− LaI

)

, (16)

As expected, the integrand is not zero but a total divergence. We will refer Eq. (16) as weak

Euler-Lagrange equation, which as a differential equation is equivalent to the submanifold

EL equation (11). The qualifier “weak” indicates that only the spatial integral of EXa
(L)

in Eq. (11) is zero [22, 23].

The weak EL equation is indispensable in establishing the connections between symme-

tries and local conservation laws in space-time for the classical particle-field systems under

investigation. Especially, the non-vanishing right-hand-side of the weak EL equation induces

a new current in the corresponding conservation laws [22, 23].
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III. SYMMETRIES AND CONSERVATION LAWS FOR PARTICLE-FIELD SYS-

TEMS

We now turn to the symmetries of the particle-field systems. A symmetry of the action

A [Xa,ψ] is a group of transformation

(t,x;Xa,ψ) 7−→
(

t̃, x̃; X̃a, ψ̃
)

:= gǫ · (t,x;Xa,ψ) , (17)

such that

∫

L

(

t,x;Xa,
dXa

dt
,ψ,

∂ψ

∂t
,
∂ψ

∂x

)

dtd3x =
∫

L

(

t̃, x̃; X̃a,
dX̃a

dt̃
, ψ̃,

∂ψ̃

∂t̃
,
∂ψ̃

∂x̃

)

dt̃d3x̃. (18)

Here gǫ constitutes a continuous group of transformations parameterized by ǫ [24]. To derive

the corresponding local conservation law, an infinitesimal symmetry criterion is needed. We

first define the infinitesimal generator induced by the group of transformations as

v :=
d

dǫ
|0gǫ · (t,x;Xa,ψ) = ξt ∂

∂t
+ κ ·

∂

∂x
+
∑

a

θa ·
∂

∂Xa

+ φ ·
∂

∂ψ
. (19)

The symmetry condition (18) can be written as

pr(1)v (L) + L
D

Dχ
· ξ = 0, (20)

where ξ, χ are 4D vectors in space-time, i.e., ξµ = (ξt,κ) and χµ = (t,x) (µ = 0, 1, 2, 3) in a

given coordinate system. Here, pr(1)v, as a vector field on the jet space, is the prolongation

of the vector field v on {(t,x;Xa,ψ)},

pr(1)v :=
d

dǫ
|0

(

t̃, x̃; X̃a,
dX̃a

dt̃
, ψ̃,

∂ψ̃

∂t̃
,
∂ψ̃

∂x̃

)

. (21)

The following expression for pr(1)v can be derived [24],

pr(1)v = v +
∑

a

θa1 ·
∂

∂Ẋa

+ φν ·
∂

∂
(

∂ψ
∂χν

) , (22)

where θa1, and φν are defined by

θa1 = ξtẌa + q̇a, φν = ξµ D

Dχν

(

∂ψ

∂χµ

)

+
DQ

Dχν
, (23)

and

qa = θa − ξtẊa, Q = φ− ξµ ∂ψ

∂χµ
, (24)
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are the corresponding characteristics of the vector field v [24].

Sometimes the system we encounter does not admit an given symmetry, and the symmetry

condition (18) is only valid for part of the Lagrangian. That is,

L = LS + F , (25)

where LS is a part of the Lagrangian density satisfying

∫

LS

(

t,x;Xa,
dXa

dt
,ψ,

∂ψ

∂t
,
∂ψ

∂x

)

dtd3x =
∫

LS

(

t̃, x̃; X̃a,
dX̃a

dt̃
, ψ̃,

∂ψ̃

∂t̃
,
∂ψ̃

∂x̃

)

dt̃d3x̃.

(26)

In this situation, the infinitesimal symmetry criterion is

pr(1)v (L) + L
D

Dχ
· ξ = pr(1)v (F) + F

D

Dχ
· ξ. (27)

Having derived the weak EL equation (16) and infinitesimal symmetry criterion (20)

or (27), we now establish the connection between symmetries and local conservation laws.

Substituting Eqs. (19), (22) and (23) into the first term of Eq. (20), we have

pr(1)v (L) = ξµ ∂L

∂χµ
+
∑

a

θa ·
∂L

∂Xa

+ φ ·
∂L

∂ψ

+
∑

a

(

ξtẌa + q̇a

)

·
∂L

∂Ẋa

+

[

ξµ D

Dχν

(

∂ψ

∂χµ

)

+
DQ

Dχν

]

·
∂L

∂
(

∂ψ
∂χν

)

= ξµ DL

Dχµ
+
∑

a

(

θa − ξtẊa

)

·
∂L

∂Xa

+
∑

a

q̇a ·
∂L

∂Ẋa

+

(

φ− ξµ ∂ψ

∂χµ

)

·
∂L

∂ψ
+
DQ

Dχν
·

∂L

∂
(

∂ψ

∂χν

)

= ξµ DL

Dχµ
+
D

Dt

(

∑

a

qa ·
∂L

∂Ẋa

)

+
D

Dχν



Q ·
∂L

∂
(

∂ψ
∂χν

)



+
∑

a

qa ·EXa
(L) +Q ·Eψ (L)

=
D

Dt



Lξt +
∂L

∂
(

∂ψ
∂t

) ·Q+
∑

a

∂L

∂Ẋa

· qa



+
D

Dx
·



Lκ+
∂L

∂
(

∂ψ
∂x

) ·Q





+
∑

a

qa ·EXa
(L) +Q ·Eψ (L) − L

D

Dχ
· ξ, (28)

where Eq. (24) is used for the third step. Equation (20) now reads

D

Dt



Lξt +
∂L

∂
(

∂ψ
∂t

) ·Q+
∑

a

∂L

∂Ẋa

· qa





+
D

Dx
·



Lκ+
∂L

∂
(

∂ψ

∂x

) ·Q



+
∑

a

qa ·EXa
(L) +Q ·Eψ (L) = 0. (29)
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According to the EL equation (7) for ψ, the last term in Eq. (29) vanishes. However, due to

the weak EL equation (16), the third term in Eq. (29) is not zero. If the characteristics qa

is independent of x and ψ, this term can be written as a divergence form, i.e.,

qa ·EXa
(L) =

D

Dx
·

[(

Ẋa

∂La

∂Ẋa

− LaI

)

· qa

]

, (30)

which induces a new current absent in the standard field theory. Substituting Eq. (30) into

Eq. (29), we finally arrive at the conservation law

D

Dt



Lξt +
∂L

∂
(

∂ψ
∂t

) ·Q+
∑

a

∂L

∂Ẋa

· qa





+
D

Dx
·



Lκ+
∂L

∂
(

∂ψ
∂x

) ·Q+
∑

a

(

Ẋa

∂La

∂Ẋa

− LaI

)

· qa



 = 0. (31)

If the symmetry condition of the system is Eq. (27) instead, the corresponding conservation

law of the system should be changed to

D

Dt



Lξt +
∂L

∂
(

∂ψ

∂t

) ·Q+
∑

a

∂L

∂Ẋa

· qa





+
D

Dx
·



Lκ+
∂L

∂
(

∂ψ
∂x

) ·Q+
∑

a

(

Ẋa

∂La

∂Ẋa

− LaI

)

· qa



 = pr(1)v (F) + F
D

Dχ
· ξ , (32)

which states that the space-time divergence of the flux equals the input form the source.

IV. SYMMETRIES AND CONSERVATION LAWS FOR KLIMONTOVICH-POISSON

SYSTEM

The Klimontovich-Poisson system, as a reduced system of the Klimontovich-Maxwell

system, has been applied extensively in plasma physics. The local energy-momentum con-

servation laws for the KP system has important implications. The action and Lagrangian

density of the KP system are given by

A =
∫

LKPdtd
3x, LKP =

∑

a

La + LF ,

La =
[

1

2
maẊ

2
a +

qa

c
Ẋa ·A0 (x) − qaϕ

]

δa, LF =
(∇ϕ)2

8π
,

(33)

where A0 is the vector potential for a given external magnetic field B0 = ∇ ×A0, and the

field ψ in this case is the scalar potential ϕ.
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As a benchmark against the result in Ref. [22], we first discuss the time translation symme-

try and the energy conservation law for the KP system. Substituting Eq. (33) into Eq. (16),

we immediately obtain the weak EL equation,

EXa
(L) =

∂L

∂Xa

−
d

dt

∂L

∂Ẋa

=
D

Dx
·
[

Ẋa

(

maẊa +
qa

c
A0 (x)

)

δa −
(

1

2
maẊ

2
a +

qa

c
Ẋa ·A0 (x) − qaϕ

)

δaI

]

, (34)

which is the same as the result in Ref. [22]. It is also straightforward to verify that the

action of the KP system is invariant under the time translation,

(t,x;Xa, ϕ) 7→
(

t̃, x̃; X̃a, ϕ̃
)

= gǫ · (t,x;Xa, ϕ) = (t+ ǫ,x;Xa, ϕ) , ǫ ∈ R . (35)

The infinitesimal generator of the group transformation is

v =
∂

∂t
, (36)

whose prolongation in the jet space is

pr(1)v =
∂

∂t
. (37)

The infinitesimal criterion (20) of the symmetry, naturally satisfied by the Lagrangian, is

∂L

∂t
= 0. (38)

The characteristic qa = θa −ξtẊa = −Ẋa is independent of x and ϕ. Substituting Eqs. (33)

and (36) into Eq. (31), we obtain the energy conservation law,

D

Dt

[

(∇ϕ)2

8π
−
∑

a

(

1

2
maẊ

2
a + qaϕ

)

δa

]

+
D

Dx
·

[

−
∇ϕ

4π
ϕ,t −

∑

a

(

1

2
maẊ

2
a + qaϕ

)

δaẊa

]

= 0,

(39)

where ϕ,t ≡ ∂tϕ. Subtracting the identity

D

Dt

{

D

Dx
·

[

ϕ
∂L

∂ (∇ϕ)

]}

+
D

Dx
·

{

−
D

Dt

[

ϕ
∂L

∂ (∇ϕ)

]}

= 0 (40)

from Eq. (39), the energy conservation is (equivalently)

D

Dt

[

∑

a

1

2
maẊ

2
aδa +

(∇ϕ)2

8π

]

+
D

Dx
·

[

∑

a

(

1

2
maẊ

2
a + qaϕ

)

δaẊa −
1

4π
ϕ∇ϕ,t

]

= 0 . (41)

This agrees with the result given in Ref. [22].
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We now discuss the connection between the rotational symmetry and the angular mo-

mentum conservation law of the KP system, which has not been studied previously. The

Lagrangian density is first split into two parts,

LKP = LS + F ,

LS =
∑

a

[

1

2
maẊ

2
a − qaϕ

]

δa +
(∇ϕ)2

8π
,F =

∑

a

qa

c
Ẋa ·A0 (x) δa,

(42)

where LS is invariant under the rotational transformation and the symmetry is responsible

for the conservation of local angular momentum. However, the term F does comply with the

rotational symmetry, and it represents a torque due to the external magnetic field generating

input of angular momentum to the system. We now choose a global Cartesian coordinate

to describe the rotation. In this coordinate system, all vectors, such as x,Xa, and A0, are

represented by 1 × 3 matrices. The rotational transformations of the system is defined by

(t,x;Xa, ϕ) 7→
(

t̃, x̃; X̃a, ϕ̃
)

= gǫ · (t,x;Xa, ϕ) = (t,Rǫ · x;Rǫ ·Xa, ϕ) , ǫ ∈ R, (43)

where Rǫ is a continuous one parameter subgroup of SO (3), the rotational group in the

3D Euclidean space. At ǫ = 0,R0 = I is the identity matrix. Substituting Eq. (43) into

Eq. (22), the infinitesimal generator and its prolongation are

v = (Ω · x) ·
∂

∂x
+
∑

a

(Ω ·Xa) ·
∂

∂Xa

, (44)

and

pr(1)v = (Ω · x) ·
∂

∂x
+
∑

a

(Ω ·Xa) ·
∂

∂Xa

+
∑

a

(

Ω · Ẋa

)

·
∂

∂Ẋa

+ (Ω · ∇ϕ) ·
∂

∂∇ϕ
, (45)

where

Ω =
d

dǫ
|0Rǫ (46)

is a 3×3 anti-symmetric matrix, i.e., an element in the Lie algebra so(3). The characteristic

qa ≡ θa − ξtẊa = Ω ·Xa is independent of x and ϕ. Substituting Eqs. (42) and (45) into
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the left-hand side of Eq. (20), we have

pr(1)v (LKP ) + LKP

D

Dχ
· ξ

= −Ω :

[

x
∂LKP

∂x
+
∑

a

Xa

∂LKP

∂Xa

+
∑

a

Ẋa

∂LKP

∂Ẋa

+ ∇ϕ
∂LKP

∂∇ϕ

]

= −Ω :

[

x
∂LS

∂x
+
∑

a

Xa

∂LS

∂Xa

+
∑

a

Ẋa

∂LS

∂Ẋa

+ ∇ϕ
∂LS

∂∇ϕ

]

+ pr(1)v (F) + F
D

Dχ
· ξ

= pr(1)v (F) + F
D

Dχ
· ξ − Ω :

[

∑

a

maẊaẊaδ (x−Xa) +
∇ϕ∇ϕ

4π

]

−
∑

a

(

1

2
maẊ

2
a − qaϕ

)

Ω :

[

x
∂δa

∂x
+Xa

∂δa

∂Xa

]

, (47)

where operator“:” between two matrices is defined to be

C : D = tr
(

C ·DT
)

. (48)

The third term of the right-hand side of Eq. (47) is zero because Ω : H = 0 for any symmetric

matrix H . The last term of Eq. (47) also vanishes,

Ω :

[

x
∂δa

∂x
+Xa

∂δa

∂Xa

]

=
d

dθ
|0δ (Rθ · x−Rθ ·Xa) =

d

dθ
|0
δ (x−Xa)

detRǫ

= 0. (49)

Equation (47) then reduces to

pr(1)v (LKP ) + LKP

D

Dx
· ξ = pr(1)v (F) + F

D

Dx
· ξ, (50)

which is in the form of Eq. (27). Therefore, the corresponding conservation law assumes the

form of Eq. (32). For the rotational symmetry under investigation, the right-hand side of

Eq. (50) can be transformed into

pr(1)v (F) + F
D

Dx
· ξ = pr(1)v (F) = −Ω :

[

x
∂F

∂x
+
∑

a

Xa

∂F

∂Xa

+
∑

a

Ẋa

∂F

∂Ẋa

+ ∇ϕ
∂F

∂∇ϕ

]

= Ω :
∑

a

qa

c

[

Ẋa · (∇A0)T
x+A0 (x) Ẋa

]

δa −
∑

a

[

qa

c
Ẋa ·A0 (x)

]

Ω :

[

x
∂δa

∂x
+Xa

∂δa

∂Xsp

]

= Ω :
∑

a

qa

c

[

Ẋa · (∇A0)T
x+A0 (x) Ẋa

]

δ2, (51)

where we used Eq. (49). The conservation law is

D

Dt

{

Ω :

[(

∑

a

maẊaδ2

)

x

]}

+
D

Dx
·

{[(

∑

a

maẊaẊaδa

)

x+
(∇ϕ)2

8π
I −

∇ϕ∇ϕ

4π

]

x : Ω

}

+
D

Dt

{

Ω :

[(

∑

a

qa

c
A0 (x) δa

)

x

]}

+
D

Dx
·

{[(

∑

a

qa

c
ẊaA0 (x) δa

)

x : Ω

]}

= Ω :
∑

a

qa

c

[

Ẋa · (∇A0)
T
x+A0 (x) Ẋa

]

δa. (52)
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The last two terms on the left-hand side of Eq. (52) can be combined,

D

Dt

{

Ω :

[(

∑

a

qa

c
A0 (x)

)

x

]}

+
D

Dx
·

{[(

∑

a

qa

c
ẊaA0 (x) δa

)

x

]

: Ω

}

=
∑

a

qa

c

[

Ẋa · ∇A0 (x)xδa +A0 (x) Ẋaδa

]

: Ω , (53)

and the conservation law is simplified into

D

Dt

{

Ω :

[(

∑

a

maẊaδa

)

x

]}

+
D

Dx
·

{[(

∑

a

maẊaẊaδa

)

x+
(∇ϕ)2

8π
I −

∇ϕ∇ϕ

4π

]

x : Ω

}

= Ω :
∑

a

qa

c

{

Ẋa ·
[

(∇A0)T − (∇A0)
]

x
}

δa. (54)

Equation (52) can be equivalently written as

ω ·

{

D

Dt

[

x×

(

∑

a

maẊaδa

)]

−
D

Dx
·

{[

∑

a

maẊaẊaδa +
(∇ϕ)2

8π
I −

∇ϕ∇ϕ

4π

]

× x

}}

= ω ·
∑

a

qs

c
x×

{

Ẋa ·
[

(∇A0)
T − (∇A0)

]}

δa, (55)

where the vector ω is defined as

ωk ≡ −
1

2

∑

i,j

Ωijǫijk . (56)

Here, ǫijk is the Levi-Civita symbol. Equation (56) implies

Ωij = −
∑

k

ωkǫijk. (57)

In Eq. (55), the cross operator “×” is defined by

(a× b)i =
∑

j,k

ǫijkajbk, (C × a)ij =
∑

k,l

ǫiklCjkal, i, j, k, l = 1, 2, 3 (58)

for any 3-vectors a,b and 3 × 3 matrix C. Due to the arbitrariness of the vector ω, Eq. (55)

implies

D

Dt
(x× gKP ) +

D

Dx
· (−TKP × x) =

∑

a

qa

c
x×

[

Ẋa × (∇ ×A0)
]

δ2, (59)

where used is made of the following identity

Ẋa ·
[

(∇A0)
T − (∇A0)

]

= Ẋa × (∇ ×A0) . (60)

The momentum density gKP and stress matrix TKP of the KP system in Eq. (59) are defined

as

gKP =
∑

a

maẊaδa, TKP =
∑

a

maẊaẊaδa +
(∇ϕ)2

8π
I −

∇ϕ∇ϕ

4π
. (61)
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V. ROTATIONAL SYMMETRY AND ANGULAR MOMENTUM CONSERVA-

TION LAW FOR KLIMONTOVICH-DARWIN SYSTEM

Another well-known reduced model is the Klimontovich-Darwin (KD) system [25–28].

For the KD system, the action and Lagrangian density are given by

A =
∫

LKDdtd
3x,LKD =

∑

a

La + LF ,

La =
(

1

2
maẊ

2
a − qaϕ+

qa

c
Ẋa ·A

)

δa, LF =
1

8π

[

(∇ϕ)2 +
2

c
∇ϕ · ∂tA− (∇ ×A)2

]

.

(62)

In this case, the field ψ = (ϕ,A) is the 4-potential. The vector potential A (t,x) is part

of the dynamics, which is different from the external field A0 (t,x) of the KP system in

Sec. IV. The rotational transformations of the KD system is

(

t̃, x̃; X̃, ϕ̃, Ã
)

= gǫ · (t,x;X, ϕ,A) = (t,Rǫ · x;Rǫ ·Xa, ϕ,Rǫ · A) , ǫ ∈ R, (63)

where the definition ofRǫ is same as that in Sec. IV. Note that the symmetry transformation

includes the rotation of the vector potential A (t,x). The infinitesimal generator and its

prolongation (63) are

v = (Ω · x) ·
∂

∂x
+
∑

a

(Ω ·Xa) ·
∂

∂Xa

+ (Ω ·A) ·
∂

∂A
, (64)

pr(1)v = v +
∑

a

(

Ωa · Ẋa

)

·
∂

∂Ẋa

+ (Ω · ∇ϕ) ·
∂

∂ (∇ϕ)
+ (Ω · ∂tA) ·

∂

∂ (∂tA)

+ [Ω · (∇A) − (∇A) · Ω] :
∂

∂ (∇A)
. (65)

The characteristic qa = θa − ξtẊa = Ω ·Xa is independent of x, ϕ and A. Substituting

Eqs. (62), (64) and (65) into the left-hand side of Eq. (20), we have

pr(1)v (LKD) + LKD

D

Dχ
· ξ

= −Ω :

{

x
∂LKD

∂x
+
∑

a

Xa

∂LKD

∂Xa

+A
∂LKD

∂A
+
∑

a

Ẋa

∂LKD

∂Ẋsp

+ ∇ϕ
∂LKD

∂ (∇ϕ)

= −Ω :

{

∑

a

(

1

2
maẊ

2
a − qaϕ+

qa

c
Ẋa ·A

)

(

x
∂δa

∂x
+Xa

∂δa

∂Xa

)

+
∑

a

[

qa

c

(

AẊa + ẊaA
)

δa +maẊaẊaδa

]

+
1

4π

[

∇ϕ∇ϕ +
1

c
(∇ϕ∂tA+ ∂tA∇ϕ)

]

+
1

4π

[

(∇A) − (∇A)T
]

·
[

(∇A) − (∇A)T
]

}

, (66)
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where used is made of the following equations

∂LKD

∂ (∇A)
= −

1

4π
(ǫ : ∇A) · ǫ = −

1

4π
ǫ · (ǫ : ∇A) , ǫ · (ǫ : ∇A) = (∇A) − (∇A)T .

(67)

The first term on the right-hand side of Eq. (66) is zero because of Eq. (49). The last three

terms on the right-hand side of Eq. (66) also vanish because they are the traces of matrix

products between a symmetric and an anti-symmetric matrices. The vanishing right-hand-

side of Eq. (66) verifies that Eq. (63) is a symmetry of the system. Substituting ξ, θa and φ

in Eq. (64) into Eq. (31), we obtain the angular momentum conservation law of the rotational

symmetry for the KD system,

D

Dt

{

−Ω : x

[

∑

a

(

maẊa +
qa

c
A

)

δa −
1

4πc
∇A · ∇ϕ

]

−
1

4πc
Ω : (A∇ϕ)

}

+
D

Dx
·

{[

1

8π

[

(∇ϕ)2 +
2

c
∇ϕ · ∂tA− (∇ ×A)2

]

I +
∑

a

(

maẊaẊa +
qa

c
ẊaA

)

δa

−
1

4π
ǫ :
[

(ǫ : ∇A) (∇A)T
]

−
1

4π

(

∇ϕ+
1

c
∂tA

)

∇ϕ
]

x : Ω −
1

4π
[ǫ · (ǫ : ∇A)A] : Ω

}

= 0.

(68)

To put the conservation law into a symmetric form, we add the following identity

D

Dt

{

D

Dx
·

[

∂LKD

∂A,t

Ax

]}

: Ω +
D

Dx
·

{

−
D

Dt

[

∂LKD

∂A,t

Ax

]}

: Ω = 0 , (69)

to Eq. (68) to get

D

Dt

{

−Ω : x

[

∑

a

maẊaδa +
(−∇ϕ) × (∇ ×A)

4πc
−

1

4πc
A

D

Dx
·
(

1

c
∂tA

)

]}

+
D

Dx
·
{[

1

8π

[

(∇ϕ)2 +
2

c
∇ϕ ·A,t + (∇ ×A)

]

I −
1

4π

(

−∇ϕ −
1

c
A,t

)(

−∇ϕ −
1

c
A,t

)

−
1

4π
(∇ ×A) (∇ ×A) +

∑

a

maẊaẊaδa +
1

4πc2
A,tA,t

]

x : Ω

}

. (70)

The detailed calculation of this symmetrization process is given in Appendix A.

Using the relations between Ω and ω and the arbitrariness of ω, the angular momentum

conservation law (70) of the KD system can be equivalently rewritten as

D

Dt
(x× gKD) +

D

Dx
· (−TKD × x) = 0, (71)

where the momentum density gKD and the stress matrix TKD are defined by

gKD =
∑

a

maẊaδa +
(−∇ϕ) ×B

4πc
−

1

4πc2
A∂t (∇ ·A) ,

TKD =
∑

a

maẊaẊaδa +
(∇ϕ)2 + 2∇ϕ ·A,t/c+B2

8π
I −

EE +BB −A,tA,t/c
2

4π
.

(72)

14



In obtaining Eq. (72), the following identities were used,

(

∇A− (∇A)T
)

·
(

−∇ϕ −
1

c
∂tA

)

=
(

−∇ϕ −
1

c
∂tA

)

× (∇ ×A) ,

ǫ :
[

(ǫ : ∇A)
(

(∇A) − (∇A)T
)]

= (∇ ×A)2
I − (∇ ×A) (∇ ×A) .

(73)

If we choose the Coulomb gauge, i.e., ∇ ·A = 0, the momentum density is

gKD =
∑

a

maẊaδa +
−∇ϕ×B

4πc
, (74)

which is same as the result given in Ref. [25].

VI. CONCLUSIONS

In this study, we developed a general field theory for classical particle-field systems, and

established the connections between general symmetries and local conservation laws in space-

time for the systems. Compared with the standard classical field theory, the distinguish

feature of the classical particle-field systems is that the particles and fields reside on different

manifolds. The fields are defined on the 4D space-time, whereas each particle’s trajectory

is defined on the 1D time-axis. As a consequence, the standard Noether’s procedure for

deriving local conservation laws from symmetries do not apply straightforwardly without

modification. To overcome this difficulty, a weak Euler-Lagrange equation for particles is

developed on the 4D space-time, which plays a pivotal role in establishing the connections

between symmetries and local conservation laws in space-time. Especially, the non-vanishing

Euler derivative in the weak EL equation generates a new current in the corresponding

conservation laws.

Several examples from plasma physics are studied as special cases of the general field

theory. As a benchmark, the time translation symmetry of the Klimontovich-Poisson (KP)

system and the corresponding local energy conservation law were obtained by the general

theory and compared with the results in Ref. [22]. As new applications, the relations be-

tween the rotational symmetry and angular momentum conservation for the KP system and

Klimontovich-Darwin (KD) system are established. For the KP system, the conservation

law is manifested as the balance between space-time divergence of the angular momentum

flux and the input due to the torque of the external magnetic field. For the KD system, it

is found that the rotational symmetry admitted by the system needs to include the rotation
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of the vector potential. Such a rotation is a representation of the rotational group in the

fiber of the vector bundle at each space-time location.
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Appendix A: the symmetrization process of Eq. (68)

In this appendix, we give a detailed derivation of Eq. (70). The first term of Eq. (69) is

D

Dt

{

D

Dx
·

[

∂LKD

∂A,t

Ax

]}

: Ω = Ω :
D

Dt

{

D

Dx
·

[

∂LKD

∂A,t

]

Ax+
∂LKD

∂A,t

· ∇Ax+A
∂LKD

∂A,t

}

= Ω :
D

Dt

{

1

c

D

Dx
·

(

∂LKD

∂ (∇ϕ)
−

1

4πc
∂tA

)

Ax+
∂LKD

∂A,t

· ∇Ax+A
∂LKD

∂ (A,t)

}

= Ω :
D

Dt

{

1

c

∂LKD

∂ϕ
Ax−

1

4πc

D

Dx
·
(

1

c
∂tA

)

Ax+
1

4πc
∇ϕ · ∇Ax+

1

4πc
A∇ϕ

}

=
D

Dt

{

−Ω : x

[

−
∑

a

qa

c
Aδa −

1

4πc
A

D

Dx
·
(

1

c
∂tA

)

+
1

4πc
(∇A)T · ∇ϕ

]

+
1

4πc
Ω : A∇ϕ

}

.

(A1)

The second term of Eq. (69) can be written as

D

Dx
·

{

−
D

Dt

[

∂LKD

∂A,t

Ax

]}

: Ω

= −
D

Dx
·

{[

∂LKD

∂A
A+

∂LKD

∂A,t

(∂tA) − ∇ ·
∂LKD

∂ (∇A)
A

]

x

}

: Ω

= −
D

Dx
·

{[

∂LKD

∂A
A+

∂LKD

∂A,t

(∂tA)

]

x−
∂LKD

∂ (∇A)
· ∇ (Ax)

− ∇ ·
∂LKD

∂ (∇A)
Ax+

∂LKD

∂ (∇A)
· ∇ (Ax)

}

: Ω

= −
D

Dx
·

{[

∂LKD

∂A
A+

∂LKD

∂A,t

(∂tA) −
∂LKD

∂ (∇A)
· (∇A)

]

x+
∂LKD

∂ (∇A)
A

− ∇ ·
∂LKD

∂ (∇A)
(Ax) +

∂LKD

∂ (∇A)
· ∇ (Ax)

}

: Ω. (A2)
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The EL equations for ϕ and A have been used in the above derivation. Substituting the

Lagrangian density LKD and La in Eq. (62) into Eq. (A2), we have

D

Dx
·

{

−
D

Dt

[

∂LKM

∂A,t

Ax

]}

: Ω

=
D

Dx
·

{[

−
∑

a

qa

c
ẊaAδa −

1

4πc
∇ϕ (∂tA) +

1

4π
ǫ : [(ǫ : ∇A) (∇A)]

]

x : Ω

+
1

4π
ǫ · (ǫ : ∇A)A : Ω

}

. (A3)

The last two terms in Eq. (A3) vanish, i.e.,

−
D

Dx
·

{

−∇ ·
∂LKM

∂ (∇A)
(Ax) +

∂LKM

∂ (∇A)
· ∇ (Ax)

}

=
1

4π
∇ · {−∇ · [ǫ · (ǫ : ∇A)] (Ax) + [ǫ · (ǫ : ∇A)] · ∇ (Ax)}

=
1

4π
∇ · {ǫ : [∇ (ǫ : ∇A)] (Ax) − ǫ : [(ǫ : ∇A) · ∇ (Ax)]}

=
1

4π
∇ · {∇ × [(ǫ : ∇A)]Ax} = 0. (A4)

Substituting Eqs. (A1) and (A3) into Eq. (69), and adding it to Eq. (68), we obtain Eq. (70).
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