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Resistive Instabilities
as Matched Asymptotic Expansions

» A. H. Glasser, Z. R. Wang, and J.-K. Park, Phys. Plasmas 23, 112506 (2016).

» At each singular surface g = m/n, the small-x asymptotic solutions of the ideal
outer region are matched to the large-x asymptotic solutions of the resistive inner
region.

» The determinant of the global matching matrix is a dispersion relation for the
global complex growth rate and eigenfunctions.

» Verification against the straight-through MARS-F code reveals regimes of
excellent agreement and other regimes of strong disagreement.

» Careful study reveals that the asymptotic expansion used to determine the inner
region matching data fails to converge asymptotically in the cases of strong
disagreement.

» A new expansion procedure is found, applying the results of W. Wasow,
Asymptotic Expansions for Ordinary Differential Equations, 1965.
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Resistive Inner Region Equations
A.H. Glasser, J.M. Greene, and J.L. Johnson, Phys. Fluids 18,7, 875 (1975).

Scaled Equations

Woe —HY, —Q(¥ —22) =0 (1)
P — Q2+ QrV + (E+F)Y +HU, =0 (2
QYpe —*YT + 20 + Q*[G(E-T) - K (EZ+FY+HVU,)] =0 (3)

Normalized Variables

¥ = perturbed parallel vector potential
= = perturbed electrostatic potential
T = perturbed fluid pressure

X = distance from singular surface

(Q = complex growth rate

E,F,G,H, K = equilibrium parameters

Physical Interpretation

(1) Ohm's Law
(2) Quasineutrality

2
(3) AdiabaticPressureLaw
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Coupled System of 2"-Order Equations

A. H. Glasser, Z. R. Wang, and J.-K. Park, Phys. Plasmas 23, 112506 (2016).

v = (

1 0 0 0 0 —H
A=|(0 @Q* 0], B= H 0 0

0 0 Q ~KHQ@* 0 0

—Q Q) 0
c=|Qx —Q? E+F
r (G- KE)Q® —1*—(G+ KF)Q?

Matrix Form

=[] &

). AV +BU +Cc¥ =0

Shearing Transformation

¥ =Ru, V' =Ru +Ru ¥’ =RrRu +2RUY +R"u

z 0 0 1 00
R=|0 10}, RR=10 00|, R'=0
0 0 1 0 0 0
1 / r 0 0
S = r 1 0
0 0 1/x22
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Final Form of Matrix Equations

Transformed Equations

A" + BY' +CW¥ =0
S [A(Ru)” + B(Ru) + C(Ru)] = 0
s[(AR)u” + (2AR + BR)u' + (AR” + BR' + CR)u] = 0

Au” +Bu +Cu=0
Transformed Matrices

1 0 0
A=SAR=1"(Ag+ Az >+ A )= [22 Q* 0
0 0 Q/2?

2/x 0 —H/x
B=S(2AR' +BR) =z (Bg+ Bz °)=| 2+ H)z 0 —Hzx
~HKQ*/z 0 0

C =S(AR” +BR' + CR) = Cy + C12 2

—Q Q 0
- H 0 E+F
1-KHQ?/2> (G- KE)Q?/2? —1—(G+ KF)Q?*/z?
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Power Series Expansion
Descending Power Series Solutions, r — 00

oo

u =" Z r % u;
=0

o0

u =zHt Z 2 (p — 2j)u;
=0
o0

u’ =zt2 Z 7 (- 25)(p — 25 — 1)u,
=0

Power Series Equations

z7#Lu =z7# (Au” 4+ Bu' + Cu)
= a7 {{(pp — 2j) (1 — 25 — 1)Ao + (1t — 24)Bo + Co]
j=0
+ (=2 +2)(n— 2 + 1A + (1 — 25 + 2)By + Gl wy
+(

p—2j+4)(n—2j +3)Au; 5} =0

(1 —27) (e — 2 — 1)Ag + (1 — 27)Bo + Co] u;
+ (=27 +2)(p—2j +1)A; + (p—2j +2)B; + C1]u;_4
+ (,Lt — 2_] + —1)(# — 2_] + B)AQUj_Q =0
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Order-by-Order Solution

Zeroth Order Equations

Lo = pu(pp— 1)Ag + pBg + Co, Loug =0, detLy =0

0
000 0 0 0 -Q Q 0
Ac=1{1 0 0}.By=|2+H 0 -H}.Co=\H 0 E+F
000 0 0 0 1 0 -1
] -Q Q 0
Lh=\pup—1)+R2+H)pu+H 0 E+F—uH
1 0 -1

detly=Q (P +p+E+F+H)=0

1
1 1
,u:—aj:\/—DI, D1=E+F+H—I, uo(l)

First Order Equations

(1= 2) (= 3)Ag + (1 — 2)By + Co] wy
= —[p(p — 1)A; + uBy + Cy] ug

Higher-Order Equations

[(# —27)(p —2j — 1)Ag + (1 — 2j)Bo + Co| u;
— [ =25 +2)(p — 25 + 1Ay + (1 — 2j + 2)By + C1] u;_,
— (=2 +4)(p—2j + 3)Au,_o
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Problems with the 2"4-Order Expansion

» For the simplest cases tested, the power series solutions converge well and give
results in good agreement with the MARS-F code.

» In other regimes, the inner region solution fails to overlap with the outer region
solutions.

» In these regimes, the power series solution fails to provide asymptotically
convergent solutions.

> In comparison with textbook treatments of this problem, the coupled 2"-order
equations used here are nonstandard. Textbook treatments use a coupled 1%-order
formulation.

» A new expansion procedure is found, applying the results of W. Wasow,
Asymptotic Expansions for Ordinary Differential Equations, 1965.

» This procedure is based on a formulation in terms of a coupled set of 1%t-order
equations in matrix form.

» The equations are found to be degenerate, leading to a difficult solution procedure,
treated only by Wasow, outlined here.
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Comparison of Growth Rate Between
Resistive DCON and MARS-F

Aspect ratio case A=5 Aspect ratio case A=2 ;
B,=1T, Ry=2m, n=9x 1071 By=1T, Ry=2m, n=7x10"
qo=1.1,q,=2.2, B=0.0035, B\=0.73 qo=1.1,q,=2.43, =0.009, B\=0.7

A'(DCON)=17.87>0

y(DCON) = - 25.98 - 29.7i s°! (stable)
Y(MARS) = 124 s! (unstable)

A'(DCON) = 1360 >0 | >

Lower aspect ratio

Increase
pressure Simulated equilibrium with circular cross
session is used for benchmark.
Go=1.1, ,=2.29 p=0.0066, Py=1.43 GGJ shows a much stronger stabilizing
A'(DCON) = 225 > 0 effect than MARS-F while increase pressure

and reduce aspect ratio.
y(DCON) = - 42.17 + 71.6 s\(stable)

y(MARS) =5.11 s! (unstable)

F TC I AH. Glasser, Resistive Matching, Sherwood 2019, Slide 8, April 15, 2019



FICI

Coupled 1%*-Order System

Matrix Form

= ‘I, ’—"A
u= /) u = rAu

Coefficient Matrix

=
[]
=g

A=A+ 2 2A +12%A

(00 0 10 0) (o 000 0 0)
0 0 0 01 0 0 00000
a_ |0 0 0 00 1f 0 00000
0 0 —-Q 0 00 H| ™ -2 00000
0 1/Q 0 00 0 H/Q*> 00 0 0 0
\0 0 1/Q 0 0 0) ~HKQ 0 0 0 0 0)
[ 0 0 0 0 00\
0 0 0 0 0 0
Al 0 0 0 0 0 0
1 Q 0 0 1 0 0
-1/Q 0 —(E+F)/Q* -H/Q* -1 0

\~1/Q —(G-KE)Q (G+KF)Q HKQ 0 -1
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Transformation to Jordan Canonical Form
with help from Mathematica

u=Tv, Vv =zlv, J=TAT, \=Q /2
1 0 HQ Q¥?  HQ —Q5”
00 0 -Q'? 0 QY?
00 —-QY? 0 Q2 0

1o 1 Q2 —@* HQ” -2
00 0 1 0 1
00 1 0 1 0
1 Q? 0 0 0 —HQ
0 0 “H 1 .Q* 0
o0 capeeo 0 1
0 —1/202 0 0 1/2 0
0 0 1202 0 0 1/2
0 1/201? 0 01/2 0
01 0 o0 00
00 0 0 00
T |00 <A 0 00
00 0 -\ 0 0
00 0 0 AO
00 0 0 0 A

L =TIAT, J=T1AT
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Schur Complement
Separates Power-Like from Exponential Solutions

Partition of Linear Equations
X1 b, A A
— . — . A=
x (X2> | (bQ) (AQI A22)
Ax = b
A1X; + AaXo = by

As1X; + AgoXy = by

Elimination of x»

Xo = A2_21 (be — Ag1X;)

1 1
(A11 — A1pAy A21) x;1 = by — ApA5; by

Schur Complement

S=A;; —ApAL Ay, Sxg =b; —ApALby

F I 'C I AH. Glasser, Resistive Matching, Sherwood 2019, Slide 11, April 15, 2019



FICI

Change of Dependent Variables

V/(z) = zd(z)V(z), detVv(z)#0

V=PW, detP#0, W =zBW
B=pP p—2'P'P, P =2(JP—-PB)

J = E Jk;r_%, P= E Pk;zf_gk, B = E Bk;lf_%
k=0 k=0 k=0

JoPo — PgBg = 0
k—1

JoPe — PkBo = Y (PiBr_y — JpiPr) — 2(k — 1)Py_,
[=0

A H. Glasser, Resistive Matching, Sherwood 2019, Slide 12, April 15,2019



FICI

Splitting Transformation:

Order-by-Order Determination of Schur Complement

1o
Jo=("" ., Bp=1Jg. Po=1

0 JZ
JoPr — PrJg = Br — K.
k—1
Ki = e +2(k — 1)Pr_1 + ¥ (Jp_tPy — PBi_)
=1

11 12 11 12
0 B2)’ P2l o ) K2 K22 )

Bil :K}:

22 22

B;” =K;
22121 21 ,11 21
JO Pk — Pk JO —_— Kk
11512 12 ,22 12
JO Pk - Pk JO —_— Kk
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Equation for Power-Like Solutions

, Bl o wll o
W = rBW, B = 0 B2 W = 0 w22

wt = zt'w!t, BY =By + 2B 2By + - -

git _ (U1 gl _ (H —KH?*Q? gll _ (b br
0 0 0)° 1 0 1-H )’ 2 ba1 Do

bp=—HQ*[1+ K(E+F—H+ H?)]

o ~HQ {1~ HK [E—Q (1+ FK + I’K)] + GH (1+ K@)}
by =2(H — 1) — (E + F + H?)

b =Q°{-2+H[1+ K (E+F—H+ H?)|}
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Power Series Expansion

o0
W = 2BW. B — Z By 2
k=0

k=0
o0 k
rBW =z Z Z Bka_lIR_QkI
k=0 1=0
0
W (z) =27 )" Wi (R — 2k1) 2R-2H

k=1
> k
T Z {B()Wk + B1Wji_1 + Z B\Wg_; — Wi_1 [R—2(k — 1)|]} LR=2k _ g
k=0 —
k
BoWr = Yr = Wg_1 [R— 2(k — 1)I] — B{Wg_; — Z B/Wp_;
1=2
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Lowest Order Solutions

Zeroth Order Operator

0 1 wil  wi?
Bo=1p o) Wk= wil w2

BW (lvil wig) v (yil y;?)
oVWVE — - — Tk =
0 0 ur YR

21 _ 11 22 12 21 _ 22 _
Wi =Ye s Wy =Yk, Ye =Y =0

Zeroth Order Equation

0 1 11

First Order Equation

BoW;1 = Y; = WgR — B1Wjg

(1 O (H —-KH*Q?
R‘(o rg)' Bl_(o 1—H

‘lU%l :yil =r — H

u"fQ :y%Q =ro—H
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Mercier Powers

Second Order Equation

B()WQ - YQ - Wl(R - 2') - 31W1 - BQWO

Yy =E+F+H+2-3r +717=0
Yy =E+F+H+2-3ry+713=0

Di=E+F+H-1/4

= ‘3/2 + —Dy
9 = 3/2 - —D[

wyt =gyt = (n—2- H)wi' + H*KQ? (r — 1) + HQ*[1 + K (E + F))]
w2 =yt = (rg —2— H)wl?> + H*KQ?(ry — 1) + HQ*[1 + K (E + F)]

Back Substitution

T T2 pll pl2 wil
- T21 T22 p2l p22 0

Tlpll 4 T12p21
- (T21p11 + T22P21)

E»—l

E=uy= \/@ [(])61 — pa1) w1 + (Pe2 — Pa2) 'u“ﬂ ~ pR-2
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Higher Order Solutions

Higher Order Equations

k

Zy=) BiWi = BsWy s+ BsWp_s + -~ + BrWo
=2

BoWr = Y =W;_1 [R—2(k — 1)I]| = BiW_; — Z;,

Higher Order Solutions

uzl—yk
—yk
(ry — 2k — 1+ H)wi = 23!

(ro — 2k — 1+ H)wi? = z;

(ry—2k—1+H)y,' =z}
(rg — 2k — 1+ H)y> = 23

2 =(r1 =2k —14+H) [(rn —2k+2— H)w;'; + H*KQ*wi", — 2]
2t =(rg— 2k — 1+ H) [(ry — 2k + 2 — H)w®, + H*KQ*wi | — %]
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Status and Future Work

» A new power series solution has been derived for the large-x limit of the
resistive inner region equations. It has the right power-like behavior to
match onto the outer region solutions, but different high-order terms.

» Conjecture: the error in the previous solution is due to omission of coupling
to the exponential solutions through the Schur complement.

» A new computer code is being developed to diagnose this solution, to
determine whether is provides improved asymptotic convergence..

» The new solution will be incorporated into the matching code and used to
determine complex growth rates and eigenfunctions.

» Verification against the straight-through MARS-F code will be redone to
determine whether the new solutions eliminate the discrepancies.

» The results of this study will be applied to a new treatment of the linear
neoclassical tearing mode.
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