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Overview

Linear simulations have revealed the effects of RE current on
resistive MHD instabilities.

Prior analytic and computational results have shown that the linear behavior tearing
and resistive kink modes are affected by the presence of runaway electron current.

In a cylindrical (2, 1) tearing mode case, NIMROD calculations agree with published
results for Lundquist number S ≳ 104.

For S ≤ 103, there is a distinct, faster growing mode that is localized near the
origin, away from the rational surface.

A reduced model is presented to analyze the mechanism of instability, and it is
posited that it is a manifestation of the ‘resistive hose’ instability
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The linearized equations of the model are resistive MHD with
zero pressure + RE continuity.

Lowercase letter variables are perturbed quantities, capital letter variables are equilibrium
quantities:

∂tnr +∇ · (nrU r +Nrur) = 0, U r = −cr
B

B
, ur = −crb⊥

ρ∂tv = j ×B + J × b, ∂tb = −∇× e

∇× b = µ0j,

e = −v ×B + η (j − jr)

jr = −e (nrU r +Nrur)

∇ · b = 0

For this work we fix the plasma density, ρ, to be constant, and assume the equilibrium
flow V = 0. cr > 0 is the parallel speed of runaway electrons along magnetic field lines.
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Analytic work with variants of this model present modified
dispersion relations for the tearing mode.

Helander finds that the linear growth rate of the tearing mode including runaways
becomes the standard FKR expression for the case with only runaway current1.
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Liu et al. find that the runaways introduce a real frequency to the eigenmode2.

γ5/4

η3/4k
1/2
c

2πΓ(3/4)

Γ(1/4)
= ∆′ − iπ

mJ ′
r0

|kc|rs
(2)

Avinash and Kaw find for a slab tearing mode (for small kinetic energy of runaways)3
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1P. Helander et al., Physics of Plasmas 14, 10.1063/1.2817016 (2007).
2C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
3Avinash and P. Kaw, Nuclear Fusion 28, 10.1088/0029-5515/28/1/009 (1988). 4 / 17
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Results from Liu, et al. compare the analytic growth rate scaling
with linear M3D-C1 calculations for the (2,1) tearing mode.4

4C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
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Liu et al. also analyze the effect of runaways on the linear
growth rate of the (1,1) resistive kink.5

5C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
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NIMROD results from the cylindrical geometry tearing mode
case reproduce Liu et. al analysis.

Equilibrium setup:

q = 1.15
(
1 + (r/a)2

0.6561

)
J ×B = 0, B(0) = 1.
cr = 20.0, VA = 1.0
Uniform background
plasma density and
resistivity
For the case with runaway
electrons, all the
equilibrium current is
carried by runaways.
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NIMROD also observes the modified scaling of the resistive kink
in the presence of runaway current.

Kink equilibrium:
q = 0.9(1 + 1/2(r/a)2)
J ×B = 0, B(0) = 1.
cr = 20.0, VA = 1.0
Uniform background
plasma density and
resistivity
For the case with runaway
electrons, all the
equilibrium current is
carried by runaways.
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With the runaway current, a different eigenmode grows faster
than the tearing mode when resistivity is sufficiently large.

Growth rate and frequency(Im{γ})
of the fastest growing mode with
RE current in the range S ≲ 104.
In this regime, the distinct scaling
of the frequency with the resistivity
suggests a different instability
branch is present
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Radial structure of eigenmode differentiates it from the tearing
mode

The linear eigenfunction of the tearing mode (left) is localized near the q = 2 rational
surface with poloidal mode number m = 2. The new mode has m = 1, and is not
localized near the rational surface.
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A reduced model captures the key features observed in the
simulation

Neglect velocity fluctuations, and change variables to Λr = µ0ecrNr/B,
λr = µ0ecrnr/B, then since ∂tB = 0:

∂tλr −
cr
B

(B · ∇λr +∇ · (Λrb⊥)) = 0, (4)

∂tb =
η

µ0
∇× (λrB + Λrb⊥)−

η

µ0
∇×∇× b. (5)

This system was solved in NIMROD without v evolution as a time-dependent, initial value
calculation, and also with a 1D spectral eigenvalue code CYL-SPEC.
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Eigenvalue calculations observe the same mode structure and
growth rates as in the NIMROD calculation.

Eigenvalues of the system are sought for the a single mode of the form exp(imθ + ikz + γt). A spectral
method is applied to the resulting ODE in the radial coordinate.

Radial profiles of the fastest growing eigen-
mode mode using the equilibrium profiles
from the tearing mode case for m = 1, k =
−0.1. cr = 20.0, and η/µ0 = 103 which
corresponds to the S = 103 case in the
tearing mode case. Eigenvalue:

γ = 1.54× 10−2 + 3.338× 10−1i

The eigenvalue from the NIMROD calcula-
tion with the same parameters is

γ = 1.46× 10−2 + 5.88× 10−2i
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Eigenvalue calculations from the CYL-SPEC code observe the
same mode structure and growth rates as in the NIMROD
calculation.

Contour plots reconstructed from the radial
profiles of the fastest growing eigenmodes
from the eigenvalue code (left). The mode
structure identical to the NIMROD simula-
tion below:
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At large resistivity, eigenvalues scale with η the same way
observed in the MHD simulation in the high-η regime.

ω > γ for all η values for this
mode

In the tearing mode, ω ≲ γ at
low η.

The shaded region indicates
where the MHD tearing mode
growth rates would be larger
for this equilibrium.
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A further reduced model reveals that the instability is driven by
the gradient in the equilibrium runaway density.

Since the axial component |bz | ≪ |br|, |bθ|,
simplify the system via b = ∇ψ× ẑ. Addi-
tionally, we neglect terms of order r/R ∼
Bθ/B, and assume Bz ∼ B0 = const.
(large-aspect ratio expansion).

(ω + crF (r))λr = −cr
mΛ′

r

r

ψ

B
(6)

ωψ − i
η

µ0

(
1

r
(rψ′)′ −

m2

r2
ψ

)
= i

η

µ0
Bzλr

(7)

The eigenvalues of this reduced system are
also sought with a 1D spectral method,
resulting in the same growth rate for the
fastest growing mode.
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This description of the RE-plasma interaction is similar to theory
of resistive beam instabilities7

A self-pinched electron beam propagating through a neutralizing background plasma experiences a
long-wavelength instability due to the decoupling of the beam motion from the magnetic field lines.
Weinberg6 gives the field equation describing the instability as

1

r

∂

∂r
r
∂

∂r
E1z −

m2

r2
E1z +

4πiσω

c2
E1z = −

4πievω

c2
n1. (8)

E1z is the axial electric field, n1 is the perturbed beam density, σ is the plasma conductivity, v is the axial
beam velocity, and c is the speed of light. This equation bears resemblance to (7).

6S. Weinberg, Journal of Mathematical Physics 8, 614–641 (1967).
7M. N. Rosenbluth, Physics of Fluids 3, 932–936 (1960).
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Conclusions

The linearized fluid runaway electron model agrees with published results
from Liu in the large S regime.

At low S, a second branch of linear instability appears that is believed to be
related to the resistive hose instability.

The forms of equations (8) and (7) indicate the fundamental mechanism for
instability is the perturbed beam density driving oscillations in the
electromagnetic field.

Work remains to extend the analytic dispersion relations from8 to the
large-guide field/massless beam particle regime.

8S. Weinberg, Journal of Mathematical Physics 8, 614–641 (1967), M. N. Rosenbluth, Physics of
Fluids 3, 932–936 (1960), S. Weinberg, Journal of Mathematical Physics 5, 1371–1386 (1964).
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