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FOREWORD

Once again the resort city of Gatlinburg, Tennessee, was the scene of

2 meeting devoted to Project Sherwood {controlled fusion research) when a

. small group of theorists (and a few experimentalists) met there on April 27
‘;and 28, 1959. Unlike the previous meeting here, which was in June of 1956

" and which covered all aspects of the Project, this meeting was limited to

:the subject of '"Theoretical Aspects of Controlled Fusion Research.” The other
”?striking difference in the two meetings was a more relaxed attitude as a result
fbf the complete declassification of the project in the interim. Unfortunately,
:;ﬁhe difficulties of nature are not legislated away as easily, and the contents
be the pspers reflect tﬁe degree ol concern with the various plasma mis-
bbehaviors.

The present report represents a compilation of the papers presented. at
this conference. Some zuthors have chosen to submit only the abstract of
their talks since they plan to publish in the open literature shortly.

The conference committee wishes to express its thanks to Mr. D. D. Cowen
of ORNL who, with his staff, was responsible for the smooth handling Qf the
local arrangements. We azlso owe a debt of gratitude to Mrs. Lorraine Abbott
for he} expert advice and assistance in preparing this report.

Committee:
A. Simon, Chairman
R. G. Alsmiller, Jr.

T. K. Fowler
E. G. Harris
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PAPER 1

THERMALIZATION OF A FAST ION IN A PLASMA®

Herbert C. Kranzer
Institute of Mathematical Sciences
New York University

Abstract

A fast ion is injected into a plasma in equilibrium. We deter-
mine the time history of the probability distribution of this ion in
velocity space. This is done by numerical integration of the linear-
ized, space-independent Fokker-Planck equation with both the ion-
ion and ion-electron terms retained. The mean time of thermaliza-
tion is calculated for several widely separated injection velocities,

Suppose a single ion of velocity 's‘o igs injected at time t = 0 into a
homogeneous plasma in thermal equilibrium with no external electromag-
netic fields present. The probability distribution f(E t) of this ion inm
velocity space satisfies the space-independent Fokker- Planck equatlon1

! of _ 82 1

5 —f(af)‘*’a,g.a‘S ( b f) (1)

and the initial condition

£(E,0) = 8 - E) . (2)

The work presented in this paper is supported by the AEC Computing
and Applied Mathematics Center, Institute of Mathematical Sciences,
New York University, under Contract AT(30-1)-1480 with the U. S,
Atomic Energy Commission.

1. See Rosenbluth, MacDonald and Judd, Phys. Rev., 107, 1 (1957), or
Grad, Thermonuclear Reaction Rates in an Electrical Discharge, NYO-
7977, Inst. of Math. Sciences, N. Y. Univ., Jan, 1958.
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The values of the dynamical friction coefficient a , and the dispersion co-
efficient b, to be taken in (1) are those corresponding to the (Maxwellian)
distributions of ions and electrons in the original plasma. 2

We introduce the dimensionless independent variables

% - T@nt/? (3)
41me4ﬂnﬂ

T & —— ———t , (4)
Ml/z(kT)slz

where T is the plasma temperature (assumed the same for electrons or
ions), M is the ion mass, k is Boltzmann's constant, R =k/M, e is the
electronic charge, n the number density of ions or electrons, and

3/2
p = 28D (5)

21/-7r_ne3

is the ratio of the Debye length to the mean distance of closest approach in
a Coulomb encounter, (All quantities are expressed in cgs electrostatic
units.) Then equations (1) and (2) become conditions of the form

2
8. EA I P LNCR (®)
$x,0 = 6(x - x) ., %, = EO/(RT).IIZ , (7)

on the dimensionless probability distribution’
$(x,7) = (RT)S/Zf(S,t)' . (8)

Our ultimate goal is to numerically integrate (6), (7), a system in-
volving two velocity dimensions and one time dimension. Here we assume
spherical symmetry in velocity space. If we are interested in following
only the speed of the injected test ion, this will be an excellent approxima-
tion.

Hence we set

1 > _
-3 //¢(y,t)dwy = g(x,t) (9)

* lyl=x

and obtain for g the differential equation

g _ (2.1 8 og

2. See Grad, op. cit., for the precise form of these coefficients in this
case. '



and the initial condition

gx,0) = x,08(x - x;) . (11)
"The function G = G(x) is defined as
G(x) = F(x) + pF(%) , ) (12)

where {(at least for singly charged ions)

02 = M/m (13)

is the ratio of the ion to the electron mass and
X 2 2
- 2 - 2
F(x)=)—t/ey/dy-ex/ (14)
o

We proceed to the numerical solution of (10), (11) by finite differences.
We approximate (10) by an explicit difference equation; i.e., we take a rec-
tangular mesh with a spacing Ax in velocity and AT in time and replace
gg by a forward difference. To reduce truncation error, the right-hand side
T
of (10) is first expanded into the form

2
°og _ (2 1 : : %g , 28
5 [(xG' + Qg + (G +xG) 35 + G=]

oT b ! % Ox

I

(15)

2
Cg + A28 + B 28 |
ox axz

The x-derivatives of g in (15) are then replaced by centered differences,
while the coefficients A, B, C are evaluated analytically. Because A(x)
becomes infinite at x = 0, the first velocity mesh point is taken at x = %Ax;
differences centered at this point are computed by assuming g to be an even
funct10n4of x. The truncation error of this scheme is of the order of (At)2
or (Ax)=.

Since the maximum of x-zG occurs at x = 0 and is equal to %, the
Courant-Friedrichs-Lewy stability criterion is satisfied if

sz < % 3 = L.8s. (16)
{Ax)

A =

For safety, we choose A = 1.75.

In most of the cases considered below, the initial values (11) of g are
represented numemcally by choosmg X, to coincide with a mesh point and
taking g(x, 0) to be X5 (Ax) at this mesh point and zero at the others. In
the one case where Xy > p, this prescription would cause oscillations which
reach unacceptably large amplitudes before damping out. The initial values

5



of g in this case are chosen to be the values g would have at some later
time T (small relative to the time scale of thermalization) if the coefficients
A, B, C in (15) had everywhere the values they have at Xy
exp [CT - (x - X + A?)2/4B?]
g(x,0) = (17)
2x§<1r13?)1/ 2

The choice of numerical upper bounds for x and T is facilitated by the
fact that the exact solution of (10), (11) approaches as 7 — o the Maxwellian

distribution
2
_ [z -x"/2
gM(x) = a7 e ; (18)

Thus for an x not much larger than x, the solution remains altogether neg-
ligible for all time. We take such an x for an outer boundary and im pose
there the simple boundary condition g = 0. The upper bound on 7 is deter-
mined by the computation itself: we stop computing whenever g(x,7) is as
close to gM(x) as the numerical approximation allows.

Numerical computations have been performed for a plasma consisting
of deuterium, for which p = 60.5948. Four widely spaced injection veloci-
ties x, were chosen: x, =0, x, = 1.55, Xg = 9.7, and Xgy = 240. The
first of these was chosen to provide a reference relaxation time. The sec-
ond corresponds to the center of the initial distribution used by Rosenbluth. 3
The choice of the last two can be most easily understood by reference to the
"friction curve' — the plot of the total friction coefficient @ (cf. (6)) as a
function of x. This curve begins at zero (for x = 0), rises to a maximum
value @p, at about x = 1.3, decreases to a minimum between x = 1.3 and

X =0, rises to a second maximum value %O’M at x ='1.3p, and finally falls

. . -2 . : .
off toward zero in proportion to x ~. The velocity x = 9.7 lies at the cen-
tral minimum, while x = 240 is approximately that velocity for which «
reaches on its final downward curve the same value as it has at x = 9. 7.

The case X, = 240 requires smoothing of the initial data. The time ?
of smoothing (see (17)) was taken as 37.7.

The numerical parameters used in the four cases are summarized in
Table I.

In the three cases where x_ was positive, the solutions behave quite
similarly (see Fig. 1). At first, the initial delta-function diffuses into a
Gaussian whose width is determined by the dispersion coefficient B{x) and
whose peak moves toward lower velocities at the rate A(x). This regular
evolution continues until the inner tail of the Gaussian reaches x = 0. (Fig.
1C). At that time, a second peak forms at x = 0 (Fig. 1D). This peak

3. MacDonald, Rosenbluth, and Chuck, Phys. Rev., 107, 351 (1957).
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Table I — Details of the numerical computation

Injection velocity X, 0 1.55 9.7 240
Smoothing time 7 0 0 0 37.7

" Velocity mesh Ax 0.1 0.05 0.06 0.1
Time mesh AT 0.0175 0.004375 0.0063 0.0175
Upper velocity bound x5 7.0 7.0 12.0 250

rapidly increases in height and width (Fig. 1E), completely swallowing up
the original Gaussian, until (Fig. 1F) it somewhat surpasses the Maxwellian
distribution (18). Finally (Fig. 1G) it slowly falls back and broadens,
approaching (18) exponentially.

When x, = 0, the initial distribution is just an extreme case of the
pattern of Figure 1F. Hence an exponential decay toward the Maxwellian

~distribution begins immediately.

Some of the quantitative details of this general picture are given in
- Table II. In the case x, = 240, the smoothing time # is included in all
elapsed times. A physical idea of the size of the units involved may be ob-

Table II
Injection velocity x, 0 1.55 9.7 240
Tim.e Tys at which central peak _ 0.9 50 1840
begins to form :
Positi 1
, .051t10n x of outer peak at this _ 1.07 7.08 11.75
time
Ti ic
‘ '1rne T o at which outer peak _ 1.3 100 1970
disappears
T . .
dlme 73, . at which exponential 0 3.9 261 2140
ecay begins '
Ti T i |
S me constant 7 of exponential 3 8 15 20
ecay
Mean th alization ti
, erareation Hme 3 12 276 2160
T4 = T3 + 7
Rati izati
. io of m.ean therrr.la.hzat‘lon ~ ~3 ~175 ~8600
time to Spitzer collision time :

These computations were performed on the IBM 704 at the Institute of
Mathematical Sciences, New York University.
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ined by noting that the root mean square plasma ion speed corresponds to
»\/§ = 1.73, while the r. m.s. electron speed corresponds to x =p v3
105. Furthermore, the Spitzer ion-ion collision time#

M1/2 3/2

t o= (3kT)°"%/8 x 0.714 1ne inn (19)

(o4

s equal to 3, 62 units of tau, ,

Spitzer, Physics of Fully Ionized Gases, Interscience, New York, 1955,
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PAPER 2

A VARIATIONAL CALCULATION OF PLASMA
TRANSPORT PROPER TIES

Ira B. Bernstein
Project Matterhorn, Princeton University, Princeton, N. J,

and

Bruce Robinson
Physics Department, Princeton University, Princeton, N.J.
and Los Alamos Scientific Laboratory, Los Alamos, N. M,

Abstract

A variational principle is given for the electrical
conductivity of a fully ionized plasma. Use of a very
simple trial function yields Spitzer's value to within 2 %.
The method can be generalized so as to apply to all trans-
port coefficients.

The Fokker-Planck Equation

‘The distribution function f, describing the joint distribution in
position and velocity of electrons colliding with a locally equal number of
infinitely massive protons in an external electric field §,consistently
neglecting magnetic ef'fectsl, is determined by the Fokker-Planck equation

Q@

R AR L g

of .
ot T Y

Dlay
lH]'-h
2]

The velocity space current density j is given by

1. M. N. Rosenbluth, Wm. M. MacDonald, and D. L. Judd, Phys Rev.
107, 1 (1957).
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(2)

- It is convenient to transform the above expression to a more symmetric
form by integration by parts. Namely since

0 3 f (g’
ts‘dvlv ]

-y
1 3 3 2
=-zng'f(z')3—_.Vv. | v - '] (3)
_ L 3 8t (y') 3 g
-ZSd ' 2 ov' av lv Vl
on defining
g=y-yv, (4)

one can write eq. (2) in the form

‘../

. 2me lnA{S‘ [£(v") Q ) £(v) fj!)] 55
m g
(5)

Quasi-equilibrium

Assume that there is spatial homogeneity and that there is only a
“uniform external electric field & ., Then if (f] is treated as a perturba-
tion, in terms of a quantity ¢ “of the same order as é_: , one writes

f=1f (L+¢) , (6)

11



where

2
£ = N(m/2nkT) /% ¢~ @MV /2T (7)

Then, on 1ineariza.tion2 of eq. (1), there results

€ - 5v =" 7 £ v =Kp. (8)

x

[
m

The linear operator K is defined by

4 A 1 21_
K¢ = ﬂe_ZM 8% .{Sd3v..fo(x)fo(1r)[_a_%({_¥). _ 9d(v )] g _3&8,

av'
m —

(9

2
_ ap(y) vol-xx
+fo(x) gvy : 3 }'

Define the inner product ( ¥, K¢) by

wxp = (v pmxg - (10)

If one takes the expression obtained by employing eq. (9) directly with
eq. (10}, interchanges v and v', and then forms one half the sum of the
former and latter expressions, there results

2 ) i t ZI_ :

(11)
3 dy(y) ad(y) v 1-yv
+ Sd v (v) o SR == 1.
- - \'%
It is obvious from eq. (ll) that K is a symmetric operator, i.e.
(y.K¢d) = (K ¢) , (12)

2. 5. Chapman and T.G. Cowling - The Mathematical Theory of Non-
Uniform Gases, Second Edition, Cambridge, 1953.
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‘and moreover that K is a negative operator, i.e.

(¢, Kp) < 0 (13)

This latter conclusion follows immediately from the observation that for an

" arbitrary vector a

2 2 2 2
aa:(gl-ggllg =2 -(a-g/gh'=0 (14)
| Electrical Conductivity
Multiply eq. (8) by ¢ and integrate with respect to v . Observe
. that to lowest order in the parameter of smallness
3 .
<v> = dv v /N
(15)
=\ &vve g/N
= vy ¢ .
Therefore,
N
it € <¥> =-(.Kp). (16)
Now it follows from the form of eq. (8) that ¢ must have the form(z)
$ . ¥
ply) = &5 e, , (17)

“ whence

N<y> = Yd3vfo(v)(1>(v) == %
(18)

_ % %— S7d3v vi (VB

that is the mean velocity lies along the electric field. Thus the electrical

‘conductivity can be written, on employing eq. (16)

_ Ne|<y>| _ kT kT
g= < = ‘Cz('f”K?’)"&z(””"“ (19)

13



Variational Principle

Define
Yly) = - == € - Lho (¥ (20)
2
- kT (L ¢)
Note that

x{o+ Ag)- A {9}
L&E{umfwwmm@w+@mﬁ w9

& (9, Kp) + 2(Ap, K§) + (A9, KAg) (9, K¢)
kT/E” (w 9°
(8T ApK(F AN {2 AW T i) KO )
( )2 2
- (—‘k—@——¢, Kg) (Ap, KA¢) + (Y A¢) (22)
Thus the condition that A be stationary is
2
p= B0y (23)

(@, K¢)

Given any solution of eq. (23) one can always find a constant ¢ such that
$p = c¢ satisfies

Y=K¢’, (24)

which is just eq. (8). This renormalization clearly does not change the value
of A. Moreover when ¢ satisfies eq. (23) (or ¢ eq.(24))

kT

SO

W ¢)=0c (25}

Thus A is stationary for variations in ¢ about that function which satisfies
ea. (24), and moreover the associated external value of XA is just the desired
conductivity ©.

14



Suppose that p satisfies eq. (23) and that A¢ is an arbitrary and
not necessarily small variation. Then it follows from eq. {22) that

x{o+ A} - A {0}
(26)

2
- I¢+A1¢(>,TI§¢+ A9) ] {(A ¢, Ktb)z - (0, K¢) (A9, KA¢)}

In order to determine the sign of the quantity in curly braces observe
that since K 1is a negative operator,

o = (p, K¢) [Ap+ x¢, K(A + x¢)]

< (p, Ko)[ (A¢, KA®) +2x (A, K¢) + x2 (¢, Kp)] (27)
2
]

= (¢, K¢)° [x +%‘5—,’—%;")l + (6, K¢) (Ag, KAG) - (Ag, Ko)°

where x is arbitrary.

Therefore
o = (§, Kp) (Ap, KAQ) - (Ad, Kp)° 28)
and

A{p+Ap} -2 {¢p}<o.

Thus the vdriational principle is an absolute maximum principle, and the
resultant extremum unique.

(3)

The conductivity of a plasma has been computed by Spitzer and Harm
by numerical integration of eq. (8). The results are reported in terms of
Oy the conductivity of a Lorentzian gas, namely a plasma in which the elec-
trons collide only with infinitely massive positive ions, and

oo L (ﬁ)” ‘ xr 29
L 1I3 2 In A m e’
3 L. Spitzer and R. Hirm, Phys. Rev. 89, 977 (1953),
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Thus

c,Spitzer -
L

0.582, (30)

while the trial functions ¢ = £- ¥ v/ and ¢g=E'v vz/e yield respectively

;"- = 0.569
L
(31)
0—"— = 0.540
L

The variational principle can be generalized to an arbitrary mixture of
neutral and charged particles in a magnetic field and has been employed for
this purpose by Walter Marshall'”®’, using the usual two body collision integrals
rather than the Fokker-Planck equation.

4, Walter Marshall - The Kinetic Theory of an Ionized Gas, A.E.R. E,
T/R 2247, 2248, 2419, Atomic Energy Research Establishment,
Harwell, Berkshire, 1958,

16



PAPER 3

TEST PARTICLES IN A PLASMA

M. N. Rosenbluth
John Jay Hopkins Laboratory

Abstract

A charged particle is considered tc move 1ln a preassigned orbit. The

sma is treated as a fluid, i.e., a medium in vhich e %0, m— 0, n—swm such
t.e/m and ne remain constant. The plasma becomes polarized so that there is
loud of charge around the test particle. The test particle is not at the
ctrical center of the cloud, so that there is an electric field acting on it.
s procedure gives the usual frictional drag, except for the proper effective
ss. There is an additional drag due to the emission of plasma waves. By
nsidering a Maxwell distribution of "test particles, " the total plasma wave
ssion is calculated.

The test particle problem has been solved in the absence and in the presence
a constant magnetic field. With a magnetic field, the drag parallel to the

1d resembles the zerc field case, except that the Larmor radius may replace

. Debye length in the long wavelength cutoff. The drag perpendicular to the

14 has no counterpart in the zero field case. It exhibits some gualitatively
 features that are due to resonant interactions with field partiecles.

17



PAPER 4

KINETIC EQUATIONS FOR A PLASMA

N. Rostoker
John Jay Hopkins Laboratory

Lbstract

IT in the Liouville equation, the coordinates of all particles but one, but
two, etc., are integrated out, one obtains a chain of eguations for the one-,
two-, etc., body distributions. The chain czn be solved rigorously by expanding
in powers of the charge. The lowest order means the limit e—0, m—0,

n—. oo, such that e/m and the ne remain constant. In this case the particles are
independent, and the one-body distribution obeys the collisionless Boltzmann
equation. In the next order the solutions for the n-body functions can be
expressed in terms of two-body correlation functions.

If no particles zre distinguished the eguation for the one-body distribution
is the Boltzmann equation. If one particle is distinguished the symmetry of the
density in phase space must be reduced. The equation for the distinguished
particle is the Fokker-Planck equation. The test-particle problem is an
incosistent approximation which is first order in the charge of the distinguished
particle and zero order in the other charges.

The consistent test-particle problem is formulated and solved for the case

of zero external mesgnetic field. The resulting Fokker-Planck equation. contains
new terms that zrise from the emission of plasma waves.

18



B. WAVES IN PLASMAS

19



PAPER 5

MICROWAVE EMISSION FROM HIGH TEMPERATURE PLASMAS™®

David B. Beard
University of California, Davis, California
Missiles and Space Division, Lockheed Aircraft Corp.

Abstract

The emission of cyclotron radiation from near-relativistic plasma
electrons has been estimated, The calculation presented here takes
into account the relativistic effects on the frequencies radiated by
energetic electrons. Radiation parallel to the confining magnetic
field is broadered by the Doppler effect or the relativistic mass
dependence on the electron energy. Radiation perpendicular to the
field is in a breoad distorted line due to the relativistic mass varia-
tion. Radiation is also emitted im higher harmonics of the fundamental
cyclotron frequency due to the asymmetry in the laboratory frame of the
electric field resulting from the electron charge. The emission has
been calculated by integration over the velocity spectrum of a Maxwell-
Boltzmamn distribution in electron velocity and summed over all the
contributing harmonics. The results of Trubnikov and Kudryavtsev,
reported at the September, 1958, Geneva Conference, are roughly sub-
stantiated,

Aside from its obvious application as a diagnostic tool some of the current
interest in cyclotron radiation emitted from hot plasma stems from a recent pre-
dictionl that it would amount to a serious energy loss. The calculation I wish
to report on estimated the plasma cyclotron emission by calculating the index
of refraction and absorption coefficient of the plasma., From these optical
constants the absorption of incident radiation was determined and by invoking
Kirchhoff*s relation the emission was found. The mmin feature of the calcula-
tion was that the variation in resomant frequency due to the relativistic

#*This report differs from the talk presented at the meeting. In the integration
over velocity space an unfortunate error in sign was made with the result that
the emission was greatly underestimated. Luckily, I. Bernstein and M. Rosen-
bluth had been looking into the problem (See discussion.) and recognized that

an error had been made in the integration. The author is deeply indebted to
them both for kindly calling his attention to the error and preventing its
further propagation.

1. B. A. Trubnikov and V. S. Kudryavtsev, Second United Nations Conference on
Peaceful Uses of Atomic Emergy, A/conf 15, p. 2213 (1958).
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behavior of the electrons was taken into account. The electrons resonated
at differing frequencies with the result that the phase of an incident wave
was simultaneocusly advanced by same electrons and retarded by others. Thus,
the index of refraction for all the elsctrons was greatly reduced. The
absorption or emission occurs in a greatly broadened frequency interval and
diminished line height.

Unfortunately, the only generally available account of Trubnikov and
Kuflryavtsev's work is rather skimpy in detail of just how the broad distri-
bution of emission with frequency was obtained from an integral over velocity
space, To better understand the Russian work I have decided not to attempt
to summarize my own lengthy calculation in a fifteen-minute paper, but instead
to start off by computing the emission spectrum directly. There are two inde-
pendent sources of line broadening, one due to the collision frequency of the
electrons with the ions and other electrons and the second due to the relativ-
istic change in resomant frequency. These two line profiles must be folded
together, The relativistic spread in non-relativistic approximation is assumed
to be given by a Maxwell-Boltzmann distributicn in velocity space. For radia-
tion perpendicular to the magnetic field (also in the case of a mirror machine
with small field gradient along the field) the electron velocity camponent
perpendicular to the field is of interest

2, Aﬂdc) l/
/V(V)a/l/ ,,%%‘@XF 24T CF d%—c%r (1)

EN

The frequency shift of @, (eH/moc% is due to the relativistic change in mass
of the electron, i, e., A“’o/“’o = v2/c,

For radiation parallel to the magnetic field taken to be along the Z axis,
when large electron velocities parallel to the magnetic field occur, the
Doppler shift Aw,/w, + v,/c is of interest.

. 2 ' A 2 VZ‘ /
M)A, = N, D%_ exp—g”j’%%b 2 ]%(Zz) (2)

Particularly in a magnetic mirror geometry and in any geometry for fre-
quencies above the fundamental frequency Eq. 1 is of primary interest. The
resultant line profile is akin to a Voigt profile:

met (xofmeriad)de
(w)mlo ’7’ 0 28T 0(%"/0%’7‘)‘2* 7/;001

where I is the total intensity emitted by a s:mgle electron and the reson-
ant freguency is given by w, (1 - x), where x is Vp /c . Por Z/cz/aao <<
Zl(r/moc and co> o this integral is essent:.a.lly zZero r plasmas of 1aboratory
dimensions; but if w<Cw, the integral is (w/2Z25;) e~ moc }akT) (1 - ©/wg)
and Eq. 3 becomes

o Ml o
T@o)~Z, N, 47 S*P~ .,z,/ﬂ (/ )] (@)
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That is, the emission at frequency o is that due to the number of electrons
radiating at a resomant frequency equal to w. The emission and therefore the
absorption is thus a very slowly varying function of the frequency compared to
what it would be if there were no relativistic broadening. Since the absorp-
tion coefficient is a slowly varying function of frequency the Kramers-Kronig
dispersion relation between the index of refraction and the absorption coeffi-
cient tells us that the index of refraction is very mich closer to unity than
it would be if the relativistic effects were not included. Thus, the change
ip refractive index at any point within the plasma is too gradual to result in
a "shiny" highly reflective plasma. Therefore, we may compute the plasma
emission by merely integrating Eq. 4 over the thickness of the plasma; if the

" result exceeds emission from a black body surface, however, the latter emission
is predicted, As a result, we would expect fundamental cyclotron emission from
a plasma with the brightness of a black body surface over a band width of

Wam/@ﬁéﬁﬂ%cﬂ/@%egé W< Uy gy (5)

where ©g min and @y gay are given by the minimum and maximum field strengths
respectively and L is the plasma length times a coefficient roughly equal to
(moc2/2kT) . (ezNo/momZ), where e is the electronic charge.

So much for the fundamental emission. Schwinger2 has evaluated the emis-
sion of harmonics of the fundamental cyclotron frequency of individual electrons
as a function of electron velocity and angle, &, of the emitted radiation to
the plane perpendicular to the magnetic field, For v2 < <& ¢2 the emission of
the harmonic frequency rwy(r>1) compared with the fundamental frequency (r = 1)
is given by

S, (O~ [{ew it fcoo éﬂ 72(/2%"77:7 L

similar to the derivation of Eq. 4 we obtain

. eaadl
. hc s w Y G ffeoos]
fJZTQQQ )z;/V;<?§?§%%%f) ;2;/41 ﬁz. Zé;;;j;:7' ’;2/ ’;] (7)

s Cxp- [ncépr)fei-wd o)

< T NN% exp—[mei e
. (8)

2. J. S. Schwinger, Phys. Rev. 75 1912 (1949)
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when integrated over 8 and summed over r. Note that instead of the usual
I(w)dw we would have I(w)dw/w. Compared with the fundamental emission the
harmonics are suffocated by the factor [{ (r202 = w2) / 3P J] .Lcos2 ?}](r - ])

For plasmas of 10-100 cms in diameter the emission is an appreciable
fraction of black-body emission for frequencies only a few multiples of the
fundamental frequency. The emission decreases rapidly with increasing fre-
quency. For plasma conditions N, = 1014, H = 5,000 gauss, kT = 50 kev, the
emission for w = 10w, is less than 104 L of a black body where L is the
plasma diameter. Since the emission depends only linearly on N, while the
power production in a Sherwood device depends quadratically on N, the relative
importance of the two processes depends linearly on N,, higher densities de-
creasing the relative importance of the cyclotron emission. As Trubnikov and
Kudryavtsev have observed only the high energy tail of the Maxwell-Boltzmann
electron distribution is affected by energy losses due to cyclotron emission.
The energy loss is further reduced by the reflectivity of the walls and field
windings, The energy loss compared to a black body freely radiating in the
absence of radiation reflectors is given by A(1 - R) / (1 - R + RA) where A
and R are the plasma absorptivity and wall reflectivity respectively. Thus
compared to a black body the energy loss is ~~/1 - R if A>>1 - R and is
~ A [1-4/01-R)f ifa<1-R

%%  CHATRMAN HARRIS: The floor is open for discussion.

DR, POST: T have a series of short remarks to make in response not only
to the paper but to Jim Tuck's remarks, and may I treat them as a series of
questions falling back from the approximation to the X. First let us suppose
that you are wrong and the Russian calculation is totally right. The Russian
calculation shows, as we all know, that the radiation in the fundamental cyclo-
tron frequency is totally innocuous and it is the harmonics that are important.
Furthermore, it simply points up, as we know, that the relativistic effects
here are dominant; that it really illustrates it is the high energy electron
irradiation that produces the majority of the radiation. So the question of
whether these high energy electrons exist in the system and their rate of
energy transport to them is important.

There is at least one case, and I have to cite our own. In the tensor
mirror machine there are good reasons to believe that the high enmergy tail is,
in fact, missing, the reason being that one cannot find electrons above a
certain potential, which is the plasma potential, and these electrons are just
the ones that we radiate. So if one puts any reasonable gas in the plasma po-
tential he finds this effect is very small, Suppose I am wrong and the effect
is large, is it, indeed, an effect that will lead to the net escape of energy.
Here we can fall back on evidence from the theory of metals and the behavior of
motals up to the short infrared, and find that any reasonmable disposition of a
surrounding conductance shell would reduce this radiation by at least two
orders of magnitude, even if it existed.

Thirdly, I think there is real reason to suspicion (and there are several
cases for this) that the electron temperatures in many of these devices may be
a good deal lower than we have in the past assumed and the radiation for this
reason alone becomes totally innccuous. So I quite agree with you that one can
take one of the worst assumptions and it appears that the situation is very bad.
However, I think there are many reasons for believing that these assumptions
are not valid.

DR. BEARD: With reference to the conductance requirement, I don®*t know if

you know I was at Livermore, spending the afternoon with Chuck Wharton., We ex-
plored this reflection business and what I have reported on is just the emission
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: ¢rom the surface of the plasma. As mentioned in the report, emission from a
plasma surrounded by highly reflecting walls is very much enhanced over the
emission from a2 bare plasma surface,

Dk. POST: I mean, you build up the energy of the fundamental density out-
side but you calculate the energy transported through that, and this is very low.

DR. ROSENBLUTH: I would like to make a comment., I have done essentially
the same sort of calculation as Beard has, mamely, to calculate the absorption
of the plane wave in the plasma.

Now the situation is slightly more complicated because if you calculate
the complete dispersion equation you find that there is a condition for the
plasm radiation being the same as the single particle radiation. It is a very
weak condition; namely, that the frequency of the emitted radiation that we are
considering has been well above the plasm2 frequency, and this is the condition
+hat is in general well satisfied. But if that condition is satisfied then the
standard technics for calculating the absorption coefficient done the proper
way give the exact same results as you get from the emission calculation by

detailed balance,

I think there is one mistake that the Russians made; namely, they took
only the propagation constant perpendicular to the magnetic field. In fact,
the propagation coefficient is a strong function of the angle with the magne-
tic field; so that you really do not fill up the black-body distribution to the
frequency which they mention but only in a narrow cone around the distribution.
Numerical estimates would indicate that cases of interest may be a factor of 10
or 20 in radiation. I mean my feeling is that the Russian calculation is
basically correct, although there is-this factor of 10 or 20 down which is an
important factor.

Then I furthermore agree with Dick in that I think essentially when you
consider the effects of weflecting walls, the effect is by no means disastrous
to thermonuclear machines.

DR, BEENSTEIN: I do a similar calculation and I agree substantially with
Marshall, If you look at the coherent response of the plasma, the wave perpen-
dicular to the magnetic field, you see that it is essentially transparent to
radiation; so therefore any fluctuation to give radiation in this direction is
a mistake and this substantiates the Russian claim. As Marshall contends, this
serves only to cut the total emission down by a number, say, of no more than 20
or 30, and then there is conal emission.
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PAPER 6

RADTAL OSCILLATIONS OF CYLINDRICAL
PLASMA CONFINED BY AXTAIL, MAGNETIC FIELDS

J. B, Taylor
Atomic Weapons Research Establishment,
Aldermaston, Berks,, England

Abstract

Radial oscillations of a cylindrical plasma, conf'ined by
an axial megnetic field have recently been observed (3),
(4)s 1In this paper these oscillations are discussed on
the basis of the magneto-hydrodynemic equations. The
effect of the proximity of a conducting wall and of
differing mass distributions within the plasme are con-
sidered. It is found that the frequency is insensitive
to these factors and depends only on the mass of plasma
and the confining magnetic field, These oscilletions
should therefore provide a useful measure of the mass of
gas swept up in a fast pinch device,

Introduction

In fast-pinch devices, whether produced by axial or azimuthal
currents, the compressed plasme naturally does not come immediately
to rest in its equilibrium position but undergoes a series of radial
oscillations about a mean position which may itself be changing
slowly with time, In the case of the z-pinch, in which the current
is axial, these oscillations have been noted by Tuck (1).

Recently much interest has been shown in devices producing pinches
by axial megnetic fields such as Scylla (2), Thetatron (3) and the
apparatus used by Kolb (4). Niblett, using the Thetatron, and Kolb
have observed radial oscillations in their experiments, and in view of

i1, J, L, Tuck - Geneva II, p. 1860,

2. W.C. Elmore; E.M. Little; W.E. Quinn - Geneva II, p. 356.
Je GoB.F'. Niblett - to be published.

4, A.C. Kolb - Geneva II, p. 345.
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.. this it is interesting to discuss these oscillations in terms of con-
‘yentional magneto-hydrodynamics., As a model for this system we consider
a cylinder of perfectly conducting plasma of radius r confined within

a concentric cylindricel conductor of radius R carrying an azimuthal
current. The magnetic field is parallel to the axis. The type of

oscillation in which we are interested is distinguished by the fact

that it involves only radial motion. In the terminology of instability
studies it corresponds tom =0 k = o.

We take the magnetic field to be purely axial and the motion purely
radial, then the electrical field is azimuthal, Using the conventional
equations of magneto-hydrodynamics the equation for small oscillations
about 2 mean position of equilibrium can be derived along with approp-
riste boundery conditions, Analytic solutions can be obtained for
‘certain idealised situations including the following:

Uniform Plasma

An elementary situation is that in which the density, pressure and
field are uniform within the plasma, i.e., the plasma is confined by
surface currents. In this case the sngular frequency of oscillation
can be expressed as

2
w = g (x) ’*H?ﬁ (1 +98)

where B is the confining magnetic field, M the mass of plasma per unit
length and

_ \ g
5 - (35-1)_;55

The quantity & will generally be very much less than unity since for repid
radial motions the plasma has an effective y near two, and the other factor
is always less than unity.

The parameter x is comnected with the pinch ratio R/r by

y 1/}(5(1;8)('13'2’ _1)
r

Values of g(x) are given in Teble I.

N

1/x 0 .625 1.5 7.5 ®

g(x) | 3,832 | 2,874 | 2.645 | 2,458 2,405

. It will be seen that the meximum effect which the wall can have is to

. Change the frequency by a factor 1.6, The influence of the gas pressure

- term, represented by 8, will be small, so that the frequency can, for
Practical purposes, be expressed in terms of the vacuum magnetic field,
. Which is determined by the external current, and the mass of plasma per
unit length of the discharge,
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Non-uniform densitv,

Under the experimental conditions which are envisaged the plasma
will initially have a greater density near its surface, having been
swept up to some extent by the "snowplough" effect produced by the
impleoding current sheath and we would like to examine configurations
which have a density profile which increases with radius. This can be
done quite simply if we make the approximation that the adiabatic law
with y = 2, applies throughout the motion, [ This approximation should
be accurate as far as the oscillatory motion itself, for this involves
two degrees of freedom; it _will be less well satisfied for the
equilibrium configuration,

An analytic form of density profile which may represent the experimental
situation fairly well is

2s - 2
Po = ar s2 1.
then the angular frequency can be expressed
2
@ 2
Y= & LM
where A= R/r and g is given below
A. = 1 1025 1-5 2.0 l|..O Py

S = 1 3.83 3,16 2,87 2,64 2,46 2,40
2 | wah | 3.7 1277 | 249 |2.28 | 2.22
b | 5.56 | 3.22 273 |20 |28 | 2042
s «° 3.33 2,68 2,31 2,07 2.00

The effect of varying the distribution of mass is very smell indeed
if the discharge is reasonably well compressed,

The limiting case s = o corresponds to the mass being concentrated

in a thin cylindrical shell, a distribution which can be treated as a
problem in single particle dynamics, and for which

Ji—z—fﬁﬁz

(7]

Large Oscillations

Some guidance on the effect of finite amplitude can be gieaned from
a study of the specially simple, but probably quite realistic, case of
the plasma being confined in a thin shell,

In discussing large amplitude oscillation the mean position and the

equiiibrium no longer coincide so that equilibrium is not a convenilent
reference point, Instead it is convenient to use the maXinmum and minimum
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radii which the shell achieves in its oscillation denoted by r2 and r1
respectively,

The equation of motion for the shell is soluble in tems of elliptic
integrals and the frequency of oscillation can be written

2 h(x,, x2) 52

= 3 1M

where h is tabuleted below and x = rl/R.

x4 0.2 Ouls 0.6 0,8
X
2
0.2 1,00 - - -
Ouk 1,033 | 1.0 - -
0.6 1.099 | 1.067 | 1.0 -
0.8 | 1.223 | 1,196 | 1,137 | 1.0
1.0 1.571 1,571 1.571 1.571

It will be seen that provided the amplitude of oscillation is such
that the maximum radius of the plasma is less than two-thirds that of
the containing conductor the freguency of large oscillations is negligibly
different from that of small oscillations,

Conclusions.

The frequency of oscillation of a cylindrical discharge confined by
axial magnetic fields has been calculated in some idealised configurations.,
Prom the results one can deduce that for a reasonably well pinched dis-
charge the frequency of oscillation is given by the characteristic
frequency

B2

M

multiplied by a factor which is insensitive to the ratio of plasma to
magnetic pressure, to the actual distribution of plasma mass and to the
amplitude of oscillation, We cen conclude therefore that a measurement

of' this frequency allied to that of the confining field (which are about
the simplest measurement one makes on a plasma device) form a good method
of assessing the mass of gas which is swept up int? the plasma end involved
in the oscillation, It would, however, be very dirficult to deduce

temperature, the ratio of plasma to magnetic pressure, or the distribution
of plasma density.
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PAPER 7

HYDROMAGNETIC ENERGY TRANSPORT IN IXION

W. B. Riesenfeld¥
Los Alamos Scientific Laboratory

Abstract

The transport of energy by hydromagnetic waves is calculated, with view
toward application to the heating process of the Los Alamos rotating plasma
mirror device.

An understanding of the mechenism of conversion of ordered drift motion
energy into random thermal energy is of great interest in analyzing the
behavior of devices like Ixion, the rotating plasma machine at Los Alamos.
Here magnetic probe studies of the diamagretic response seem to show that
the original azimuthal drift mode of motion is transformed into a state which
consists of a shell of thermal or turbulent motion located roughly halfway
between the centerline and the outer electrode., The entire sequence of
events occupies a relatively long time (of the order of a hundred microseconds)
and the relative drift velocity of ions and electrons in the initial state is
small. A plausible agency for effecting the energy transfer would be hydro-
magnetic waves, experimentally known to be excited in similar geometries.
Mechanisms for the resonant damping of such waves, such as T. Stix's ion
cyclotron heating process,2 are likewise known and might account for the
appearance of the observed final state.

As a first step in determining whether such a picture makes sense, the
generation, structure; and energy transport of the appropriate hydromagnetic
modes was examined. Using reasonable boundary conditions, one can then
obtain cylindrical standing waves corresponding to the Ixion geometry, with
fairly well defined shells of high energy density. To avoid complication,
the motion of the plasma associated with the wave was treated by means of
linearized Boltzmann equations, leading to the hydrodynamic approximation
plus an equation of state, and the conductivity and viscosity of the fluid

Work performed under the auspices of the U. S. Atomic Energy Commission.

1. K. Boyer et al, Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy, p/2383, 31, 319 (1959).

2. T. H. Stix, Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy, p/36l, 31, 125 (1959).

30



were taken as empirical parameters. Dispersion relations for the three
principal modes of propagation were obtained as well as their detailed
polarization structure, and energy density distributions were calculated.
The energy distributions for standing waves (corresponding to the modes
commonly referred to as A = 2, 3 magnetoacoustic modes) were found to be
based on expressions in agreement with independent Russian results (see
for example the work of Akhiezer and Sitenko’). The detailed results on
the cyclotron heating rates in ce¢ylindrical shells and a comparison with
experimental data will be presented in a subsequent paper.

3. A. J. Akhiezer and A. G. Sitenko, JETP 35, 116 (1958).
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PAPER 8

WAVES IN A PLASMA¥
W. P. Allis

Department of Physics and Research Laboratory of Electrcnies
Massachusetts Institute of Technology
Cambridge, Massachusetts

Many papers that consider the effects cf terminal
motions, finite Larmor radius, e¢ollisions, and so forth
on the propagation of plane waves through a plasma in the
presence of a magnetic field have recently appeared.1"4
The necessary mathematlics obscures the origin of many of
the predicted phenomena, and as these also depend ¢ritically
on the range of frequency, plasma density, and the magnetic
field that 1s considered, it has seemed worth while to view
the complete range of these last three variables in the
simple limit in which there are: (a) no depsity gradients;
(b) no collisions; and (¢) nc thermal motions. The thermal
motions affect mainly the slow waves whose phase velocity
is comparable to the thermal motions. For thils reason,

among others, we shall be partlcecularly interested to note

the conditions under which slow waves exist.

*This work was supported in part by the Atomlic Energy
Commisslon; and in part by the U.S. Army (Signal Corps), the
U.S. Alr PForce (Office of Scientific Research, Air Research
and Development Command)}, and the U.S. Navy (Office of Naval
Research).
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Under these restrictions, the mobllity of an electron
or lon in a magnetic field 1s a tensor quantity5 that 1s
particularly simple when it is expressed ln components of
the electric field which are either parallel (up) or
rotating about the magnetic field 1n a right-handed (ur)
or left-handed (ge) direction. In terms of the mobility

tensor, we obtain the plasma conductivity,

§ % naf, (1)

by summing over the specles of charged particles, and hence

the effectlive dlelectric coeffliclent

Kp JKy 0
K= |-J& K 0| =1+ (2)
Jo o
0 0 Kp
where
XKp = K, + Kp

(3)

Ky = K, - KL

The tensor (Eq. 2) 1s written in Cartesian, nonrotating
coordinates. Kp and KT are the components parallel and
transverse to the magnetic field, and KH 1s the component
that gives the Hall effect. The last two components are
given 1n terms of the rotating components by Egs. 3.

For the particular case of a collisionless, cold, three-
component (ions, electrons, and neutral molecules) gas the

components of the dielectric tensor are

2

Kp =1 -

K, =1 - a?/(1 + B, (1 -B.) (%)
K =1-a?/(1 -p)(1+p)
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They are expressed simply in terms of the ratios

C2
mm
w 0 T4+ -
(5)
B by _ _eB
+ m miw
where 02 1s a measure of the plasma density n, ﬁ+ of the

applied magnetic fleld B, and a, B+, B_ all vary inversely
wlth the circular frequency w of the electriec fleld.
We now study plane waves by assumlng that all quantities

are proportional to

exp jo(t - - T/c) (6)

where N 1s a vector normal to the wave whose magnlitude n 1is
the index of refraetion for this direction of propagation.

There should be no confusion in the use of the same letter

in formula 5 because the plasma density will only appear

implicitly in the symbol a. The phase velocity 1s

- _ch
== (7)

n2
Substituting expression 6 in Maxweli's equatlons, we

obtain

- <™

Ax(AxBE)+K-E=0 (8)

6

This equation, among others, has been considered by Astrom.
To obtain solutions, the determinant of its coeffilclents
must vanish, and thls gives the dlspersion equatlion for the
index of refraction n. This equation would, in general,

be bi-cubic but, because the temperature has been neglected,
the sixth degree terms cancel and we have the bi-quadratic

equation
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Anh - Bn2 + C

(i}
@]

(9)

with

A= KT sin2 0+ Kp cos2 e

B 2 2
B =KK, sin® 6 + KpKT(l + cos“ 9)
C = ILPKI'K,L

whose discriminant is

4

2 o+ (KK, - KPKT)2 cos’ ©  (10)

- g2 2

D P

2
KH sin

Here © is the angle between the wave normal n and the applied
magnetic field B.
Because colllsions have been neglected, the discrimi-

nant D2 1s always positive. Therefore n2

1s always real,
and n either real or pure lmaginary. This sharp distinction
between conditlons of propagation or.attenuation exlists in
virtue of assumptions (a), (b), and (c).

The solutions of Eq. 9 are the indices of refraction

(B2 D)"/*

7y (11)

associated with the two polarizations, but 1t is easler to
understand the solutions of Eq. 9 if it is solved for the
direction of propagation, ©, in terms of the index n:

tan @ = - e (n2 _ Kr)(ne i Kﬂ) (12)

(n2 - Kp)(KTn2 - erl)

In this form it 1s clear that for propagation along the

magnetic field (©=0) there are two waves

2
n, = Kr
. (13)
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that may be either propagated or attenuated according to

the signs of Kr and K and the subscripts on the dlelectric

L’
components indicate that they are right and left eclrcularly
polarized.

Similarly, for propagation at right angles across the

magnetic fleld (6 = ¥/2) there are two waves

2
n, = Kp (14)
n® = KK,/

X rip/Kep

of which the first 1s polarized with the electric field
parallel to the applled magnetic fleld. We shall call this
wave "ordinary" because it 1s not affected by the magnetiec

"extraordinary,"

field, The second wave, which we shall call
1s transverse to the magnetlc field but not transverse to
the direction of propagation. It 1s made up of electric
vectors rotating right- and left-handed around B, describilng
an ellipse 1n a plane perpendicular to B which c¢ontains

the direction of propagation. Thus

1
+ L (15)
n2

.:l
ol
=5

) mL~

TheAextraordinary velocity 1s intermediate between the
right- and left-handed velocities.

For intermediate directions (0 < © < #/2) the index
is intermediate between the "principal indexes" given by
Eqs. 135 and 1%, If we make a polar plot of the phase
velocity U, we obtaln two surfaces, called "normal wave
surfaces," 1like those shown in Pigs. 1, 2, and 3. Since D
i1s never zero, the two wave surfaces do not intersect.

In crystal optics the term "ordinary" is used for
waves that obey Snell's law, that 18, those for which the

wave surface 1s spherical. In our case nelther surface 1s
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Fig. 1. Wave Normal Surfaces of a Plasma in a Magnetic Field

(Effect of Electrons Only).
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spherical except in limiting situations. The term "ordinary”
does not apply to elther complete wave surface; we use 1t
in a different sense, and only for propagation normal to
the magnetic fleld. (This 1s also Russian, but not Swedish,
usage.) If we want a term for characterizing an entire wave
surface, we should use "right-handed" and "left-handed,"
because this characterizes the directlon of rotation of E
around B for the entire surface. We must be e¢autlous here,
too, because the wave that we call "right-handed," rotates
left-handed about the direction of propagation when 1t propa-
gates along -B. A more satisfactory notation for an entire
wave surface would be to denote it (rx), (£o), (x), and
so forth.

We now wish to investligate the matter of which values
of the parameters a, p_, and © give propagation (n2 > 0),
and which give attenuation (n2 < 0). The boundaries of
these regions are obviously the lines along which n2 =,

u = 0, which we call "resonances," and those along which

n® = 0, u =, which we call "cutoffs."

The prlncipal resonances are given by

K,=®, B_=1, Electron cyclotron resonance (16)
Ky =, B+ = 1, Ion cyclotron resonance (17)
o (L-e2)( -6f) ’

Kp =0, a% = , Plasma resonance (18)

1-8,8_

The first two Justify our definition of “resonance.” The
third 1s an extension of the conventional use of "plasma
resonance"” which applies when there 1s a magnetic rileld,

but note that "plasma resonance” does not occur at the
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i"plasma frequency”" For high frequencies (§+<< 1) plasma

, p’
. ‘pesonance occurs at

w8 = o+ wf (18a)

and 1s represented on a plot of B? against a2 (Pig. 1) by a
‘ diagonal straight line. In general, it is represented by
| a  hyperbola

w4 - (mg + wg_ + w§+) m2 + (wg + mb+wb_) WPy = 0
(18b)

one branch of which goes through the points (wb- =0, = wp),

~and (wp

L 2 _
=0, = mb+) and (wp =0, 0 = wb+mb_). This last

=0, w = mb_) and the other branch through

(@,
~ resonance, which occurs ror large plasma densities

“(n(M + m)c2>> B + H), 1s sometimes called the "hybrid
;‘cyclotron resonance”" but 1ts relation to the cyclotron fre-
“~quencies 1s acclidental. At large plasma densities the elec-
. trons and lons must move together in the directlon of the
 wave normal, otherwise charge separation would oeccur, but
}.this 1s prevented by Coulomb forces; however, they may

.move parallel to the wave surface. At the particular fre-
;quency w? = W, @, _ the equations of motion’ show that the
ijelectron‘énd ion displacements in the direction of E are

fﬁidentical
= 2
7, * E = eE7/(m-M) (19)

~wWhereas at right angles to E the electrons have large dils-

lacements. The resonance occurs because Coulomb and elec-
Gtromagnetic forces independently make the electrons and
ons move together along E.

There is no resonance for the ordinary wave but there

re resonances along directlons other than the principal
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directions. These are found by setting n = in Eq. 12:

2

tan® 6 _ = -Kp/KT (20)

es

and occur whenever Kp and Kq have different signs. For a
given plasma these directlons occur on a cone whose axis is

along B and whose angle Qre depends on the frequency. In

s
directions near the resonant cone the phase velocity 1s

slow and hence 6erenkov radlation is possible. Any electron
in the plasma can have a "bow wave" which will be near the
resonant cone (Fig. 4).

The resonant directions are also the directions in
whlch plasma osclillations may occur, since it can be seen
from Astrom's expressions for the components of the electric
vector that this vector becomes normal to the wave surface

at any resonance.

The principal cutoffs are given by

K =0
r Y 2 2
o’ = (1 -p8.){1 -BZ), Cyclotron cutoffs (21)
K =0, a°=1, Plasma cutoff (22)

The two cyclotron cutoffs form a continuous curve

which 1s a parabola on the ﬁ2 - a2

plot. The ordinary wave
cuts off at the plasma frequency. There 1s no eutoff for
the extracordinary wave. Nelther are there cutoffs in other
than the princlpal directlons, because setting n° = O in

'Eq. 12 yields tan2

e = -1.

We are now ready to make a map of all possible wave
surfaces by plotting Bz against a2 for all the principal
resonances (Eqs. 16, 17, and 18) and cutoffs (Eqs. 21 and
22). Increasing the magnetic field would produce upward

motion; lncreasing the plasma density would produce motion
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to the right; and decreasing the frequency for a given
plasma and field would produce radial motion from the origin.
FPigure 1 shows only the high-frequency range (B+<< 1), in
whieh only the electrons can follow the oscillatlons. As

a resonance or cutoff line 1s crossed, one or two of the
waves in the principal directlons disappears, or reappears,
and hence the shape of the wave surface changes radically.
Within each of the eight areas in which the plane is ddivided
we have plotted the corresponding normal wave surface with
the direction of B parallel to the P-axis, calculated for
some speciflc point 1n the area. The free-space light
velocity 1s given by the dotted circles as a reference.
There is8 one area in which there is no wave surface, as all
waves are attenuated in this area. In the remalning seven
areas there 1s propagation in some directions, but in only
two of them do the two waves exist for all directions. Thus
a plasma 1s largely opaque or largely transparent according
to the way in which you look at it. Three of the areas have
figure-eight, or figure-infinity, wave surfaces. These are
the areas where Kp/KT i1s negative and there is a resonant

cone. The two points at (B = O, @ = 1) and (@ = 0, B_ = 1)

"

are extremely singular because both resonance and cutoff
lines 1intersect there. Only the presence of a magnetic
field removes the confusion about whether the plasma fre-
quency mp i1s a resonance or a cutoff. The ordlnary cutoff
line at a = 1 1s itself quite singular because on the low-
density side of this cutoff the left-handed and ordinary
waves are on the same wave surface, but on the high-density
side 1t 1is the extraordinary wave that connects with the
left-handed one. The transition is shown in PFig. 2, in

which four wave surfaces close to the plasma frequency are
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shown. At the plasma frequency the wave surfaces consist

of a sphere close to the veloclty of light

l -8
LSRN S . (23a)

put the polar points on this sphere are missing. : They are

replaced by two external points
1 1 1 .
Tz Tz ltgs (25Db)
n2 n2 B_

and two internal points (if they are real)

1 1 1
=11 - (23c)
o R

On the left of a2 = 1 the sphere has dimples that connect

with the internal points (or the origin). On the right
of 02 = 1 the sphere has projectlons that connect with
lthe external points.

As we approach the line a = 1 from the right above
¢yclotron resonance, or from the left below cyclotron
resonance, the resonance cone becomes very narrow. Thus
although a = 1 1s not a resonance, it 1s always very close
to a resonance for propagation very nearly along B.

The entlire range of frequencies is shown 1in Fig. 3,
but logarithmic scales'have had to be used and this obscures
the simple shape of the resonance and cutoff lines. Even
80, a small mass ratio of 4 had to be chosen so that the
two small areas near ion cyclotron resonance would remaln
vlsible. There are now 13 areas with 12 distinct wave surfaces.

In the 1limit of low frequencles the figure-elght in
the upper right-hand corner becomes two spheres tangent at
the origin, and the elliptical figure becomes a sphere

tangent externally to the two previous spheres. This
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sphere obeys Snell's law and is called the "ordinary wave"

by Astrdm. We denote it (rx), and we have

7 =gt MB&HL (24a)
u c g
rXx

1/2

where (B - H/n(M+m)) is the Alfvén velocity. The other,

termed "extraordinary wave" by Astrom, 1s given by

2 2 2
up = u,, cos 2] (24p)

In reglons where n? 1s negative the exponential (B)

may be written

exp($nt - 2Fn’ ";/lo> (25)

where Ao 1s the free-space wavelength and o%n = 2 jn 1is

the attenuation per free-space wavelength. This attenuation

1s nowhere shown on our dlagrams, but 1t is evident that

n*2 rises linearly beyond any cutoff and jumps from zero to
infinity at any resonance (Fig. 5). Because we have removed
all absorption mechanisms from our theory, a semi-infinite
Plasma wlll be perfectly transparent when n2 > 0, and perfectly

reflecting when n2

< 0. A slab of plasma whose thickness
is a finite number of free-space wavelengths will still be
perfectly reflecting near a resonance, but near a cutoof

considerable. radlation may be transmitted.
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PAPER 9

OSCILLATIONS OF A FINITE COLD PLASMA
IN A STRONG MAGNETIC FIELD

Carl Oberman and John Dawson
Project Matterhorn, Princeton University

Most treatments of plasma oscillations have been
given for plasmas of infinite extent. Such treatments
give information on the propagation of electromagnetic
waves inside a plasma, but give no indication of the cou-
pling between these waves and the electromagnetic fields
outside the plasma. This coupling determines the radia-
tion from, say plasma oscillations, as well as the response
of the plasma to externally applied fields, where the fields
may be either wave fields or near fields produced by cur-
rents and charges near the plasma surface. Since the
electromagnetic field affords one of the most fruitful means
for investigating the behavior of plasmas, it is important
to know the size and effects of this coupling.

We have considered the oscillations of a bounded plasma situated
in a strong magnetic field. In order to facilitate the treatment of the
problem, we make the following assumptions:

a) The magnetic field is of such strength that motions perpendic-
ular to it are negligible;

b) Thermal motions of the electrons are negligible;
c) The electrons behave like a charged continuous fluid;
d} The ions constitute a uniform, fixed neutralizing background;

e) The amplitude of oscillations is so small that the linearized
equations of motion are applicable;

f} The mass motion of the electrons in the unperturbed plasma
vanishes.

If the constraining magnetic field is taken in the =z-direction, the
linearized equations of motion for the perturbation quantities inside the
plasma are shown in Slide 1. The plasma geometries we have considered
are the infinite slab and cylinder with the constraining field B parallel
to the surface.
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As for boundary conditions at the plasma surface, the large zero
© order magnetic field constrains electrons to move parallel to the surface
- and hence no surface charge can accumulate and hence all components of
. E. are continuous across the surface. Since the plasma density is every-
where finite, there are no sheet currents at the plasma surface. Thus
all components of B are continuous,

- avz -
zm'gt‘ "—ezeEz,
N, OV,
ot oz
~ 108E » 4men
VXB_E_t_ez S Vv,
188
E——__i
v T
V- E =—47eN,
v:-B=0
Slide 1.

In order to completely specify the problem, boundary conditions
at large distances must be given for the fields such as periodic or
reflecting ones (which conserve energy). However, in the treatment of
he problem of the radiation due to plasma oscillation it is convenient

o abandon these energy conserving boundary conditions at large dis-
ances and admit the presence of perfectly absorbing boundaries.

Before proceeding on to special problems, it is’ worthwhile to
exhibit an orthogonality relation satisfied by the normal modes. It is not
necessary to know the complete structure of these modes but only that
the field guantities are of the form A(x,y,z,t) = A(x,vy) expi(wt+kzz) .

It is easy to show from the basic set of equations that all field
quantities are determined when E_ is determined, If E_ (x,y) and -
E_>(x,y) are two normal modes of the system (with the same k) and

Wy ‘and w, are the corresponding normal frequencies, then we %ind
the orthogonality relation shown in Slide 2.

1 (k= ud [J‘ Q¢ ol

1 E_E_ dxdy— —fEE dxdy|=0.

cz oyl z1™ 22 “’f w% Ui z1™2z2

1 (A= c*Q%m?

~c—z i [f _Ez]Ezzdxdy+—-———22 f NyN; dx dy| =0 .
P+ Ut n'e Ui

Slide 2.
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Here U°® and U' are the regions exterior and interior to the
plasma in a constant =z plane and % is the square of the plasma
frequency. This equation can alternatively be written as shown in Slide 3
which exhibits explicitly the particle contribution to the modes., These
modes can be normalized so that the term in brackets is §; ; if the
modes are discrete or § {1-2) if they are members of the continuum.

K + k2 + k2 = w?/c?
i2 _ .08 2/,.,2 2002 /ol
K = ke (1 - 02/w?) — 122wt

Q% = 47me?/m

Slide 3.

If we continue the Fourier decomposition of the modes in x and
v say for the slab situation, we find the following dispersion relation
relating the wave numbers inside and outside the plasma to the frequency.

Because of the symmetry of the situation, the modes fall into
either even or odd forms in x and their general character is exhibited
in Slide 4. Case A is the situation obtained when (kox)2 > 0, (klx)2> 0
and represents waves propagating in the x-direction both inside and
outside the plasma. This is a situation arrived at when the frequency
w2 > 2, and where the phase velocity along the surface exceeds the
velocity of light c. (For ease of presentation, we take ky= 0 unless
otherwise indicated.)

<

A

— S— b ty
Y '7 \wz(‘o'z Ezz_:
_6- E; —— —é-sz——— w>Q
wz>nz w2<9,2 </ —
CASE A CASE B CASE C CASE D

SLIDE 4

Case B where klxz' >0, kox2 < 0 are the modes which propa-~
gate in the x-direction inside the plasma, but not outside. These are
waves trapped in the plasma. This situation obtains when < 2% and
the phase velocity along the surface is less than c, In this case, a
period equation shown in Slide 5 must be satisfied in virtue of the bound-
ary conditions at the plasma surface and this in turn restricts k,°, k,*
and  to discrete values for a given k_, k, . In this slide the period
equation is given as well as the values of kO, ki w for k, given for

xX »
frequencies near the plasma frequency.
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If we refer to Slide 4, we see Case C which propagates on the out-
ide but not on the inside. These are waves excluded from the plasma,

Modes of type D are not allowed in the present problem because
f the break in the derivative., Conditions other than those here realized
gurface charge) can give rise to modes of this type.

1 would like now to touch briefly on several problems which can
e treated using the previous normal mode analysis.

For Case B.

{Lome} 0o = isine {5}

—cot

If =0, w?~ Q? then withe =Q —w

we find
kgz = (Q%/c? — K2) + 29 e/c?
K2 = 2(e/Q) (K2 - Q%/c?)

Then e/ =

/0~ {(n Y 2)2} /2 (s + 1 {270}

Slide 5.

: The first one that I shall just mention is the scattering of a plane
«m. wave by a plasma cylinder. The previous normal mode analysis for
slab situation was repeated for the cylindrical situation with essentially
similar results. These modes were superposed so as to add up in the
1sual way to an incoming plane wave of unit amplitude plus an outgoing
cylindrical wave. The amplitudes and phase shifts of the partial waves

re derived as well as the differential and total cross section, These
‘esults are of course functions of the plasma frequency and radius of the
cylinder and may be of use in plasma diagnostics.

A second similar problem is that of reflection and transmission
f radiation for a plasma slab. That is, we consider the problem of a
lane, wave with certain wave vector incident upon the slab and investigate
he amplitudes of the transmitted and reflected waves. Again supposing
the normal modes so as to yield only an outgoing wave on the side op-
site to incidence, gives the reflected and transmitted amplitudes, and
us intensities, Slide 6 shows the transmission coefficients (k, = 0)
r Cases A and C, with their dependence on the frequency, plasma
e€quency, and thickness. The usual interference properties of thin
ilms are here realized. (For instance, there is total transmission when-
er )Llﬁ = nw/2.)

Another interesting problem which we considered was the formula-

1on of the response of the plasma to any arbitrary distribution of sources
O planes on either side of plasma slab. We carried out in detail the
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Case A.
ot .
T = [1 + Z)T (1 — Qz/wz)_1 sinz(ka(‘ 5)]—1

Case C.

04 .
T = [1 +— (@ /w? 1) sin b? (2 |k§l6)]“
4w

Slide 6.
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SLIDE 7

problem of oppositely charge finite condenser plates placed close to the
plasma surface driven at a frequency @ << § . Slide 7 shows schemat-
ically the geometry and standing wave pattern of the steady state behavior
of the field which has strong maxima along the dotted lines, The shaded
area shows the region of penetration of the vacuum field 4r o _elWt, The
possibility of getting strong low frequency fields into the plasma is an
interesting one. Slide 8 shows a plotof E_ at z = 0 as a function of x
for various values of £, where £ = Lw/68 .

The last problem I wish to discuss is the radiation emitted by
plasma oscillations of the slab. There are several approaches to the
problem. We have formulated the initial value problem for the plasma
in terms of normal modes so that we can pluck the plasma and watch the
development of the radiation field in time. We have also formulated the
problem of the response of the plasma in the presence of externally driven
currents and charges and mechanical forces. Again, under these circum-
stances we can sit back and watch the evolution and steady state behavior
of the field, A third method which yields results in close accord with the
other two is to merely alter the boundary condition at large distance so
as to absorb all incident radiation.

The analysis now is formally similar to the other normal mode
cases except now W is complex with positive imaginary part to conform
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tan] . ; . (even
1 = 1k© Jcl
{—cot (o) = il e {odd }

letw =2 +¢

2 2
then €/Q = {(n +1/2) } _2_21r_)E (k26% — 1 + 2ika) {even

n? 2(k"3" + 1 odd
“ | where k=(Q%/c? - 1" .
Also
Q2 ¢
K=k tid g

Slide 9.

with the absorbing boundary condition. This in turn demands ky°® and

k,l to be complex, and the real parts of k,® and w must have the

same sign (for x> 0) so as to yield only outgoing radiation. Slide 9 shows
the period equation demanded by boundary conditions at the plasma sur-
face. For the case k, = 0 and W close to § we show the characteristic
frequencies and wave numbers and the explicit exponentiation in space and
time. Slide 10 shows the form of these modes.
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We are currently extending these investigations to include (a) the
effects of a finite rather than infinite equilibrium magnetic field, (b) the
ion dynamics, and (c) the effects of temperature.
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PAPER 10

SOME ADDITIONAL RESULTS ON WAVES IN A
PLASMA IN A MAGNETIC FIELD

Ira B. Bernstein :
Project Matterhorn, Princeton University, Princeton, N.J.

The general dispersion relation has been computed which
characterizes the small motions about a static equilibrium in a
uniform external magnetic field of a fully ionized, relativistic plasma.
It is assumed that collisions are negligible. Among the various
results obtained are information on certain beam instabilities, hydro-
magnetic instabilities associated with anisotropies of the equilibrium
distribution function, and the propagation of electromagnetic waves,

Of particular interest are the results on the propagation of
waves in directions skew to a2 strong equilibrium magnetic field. When
the velocity distribution of the electrons is that corresponding to ther-
mal equilibrium, such waves whose frequencies are harmonics of the
gyration frequency are little damped. Application of Kirchofi's law then
indicates that the synchrotron radiation should be correspondingly small.
This is in agreement with the results of Rosenbluth.

This work is being written up for publication.
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C. THEORIES PERTINENT TO SPECIFIC EXPERIMENTS
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THE INTEGRAL TNVARIANT FOR ADITABATTC PARTICLE MOTTION

T. G. Northrop and E. Teller
University of California, Lawrence Radiation Leboratory

Abstract

The usual first-order particle drifts conserve the integrel invariant,

u, d1. A proof will be outlined and applications to particle motions

sgnetic fields will be given. Further details may be found in UCRL-5615,
ility of the Adiabatic Motion of Charged Particles in the Barth's Field, "
G. Northrop and E. Teller. A paper has also been submitted to the

TCAL REVIEW.
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PAPER 12

CRITICAL CURRENT FOR BURNOUT IN AN
OGRA-TYPE DEVICE

Albert Simon
02k Ridge National Laboratory

Abstract

A complete algebraic anslysis has been obtained for the
variation of the steady state ien density n, with injected current
T in an OGRA-type fusion device (i.e., a device based on trapping
of ions by breakup of energetic molecular ions on collision with
either the background gas or trapped ions). The most general varia-
tion of n, with I is shown to be an s-curve with at most three roots
of n, for a given input I. A physical interpretation of these three
roots is given. Iu addition algebraic expressions are obtained for
the two currents at which the bends in the s-curve occur. It will
be necessary to attain the larger current in order to build up a
high density plasma when the density is being increased from below.s
On the other hand, once the high density has been achieved it may -
be maintained by steady injection of a current larger than the
lower value.

In two previous publications; an expression was derived for %he
critical current at which formstion of a plasme by high-energy injection will
begin. This previous expression was a case in which the trapping mechanism
(although not specified in detail) was localized and did not depend on either
the neutral gas in the device, the trapped ion density or the dimensions of
the system. A trapping mechanism of this sort is provided by the arc in DCXo3

The situation is quite different in a proposed fusion device such as
OGRA. Here the injected molecular ions have a long mean-free-path L before
they strike the injector snout and trapping occurs by virtue of the dissociatlon
of the molecule on collision with either the background gas (cross section dhob
the trapped ions (63*), or other molecular ions in transit (6ge*). Nevertheless,
one might suspect on physical grounds that a critical current also exists in
this case and indeed such an expression has been found. The result is somewhat
more complex than in the case of DCX because of & feedback which is inherent in
the gas-breskup scheme. The onset of neutral burnout results in a reduction of

1. A. Simon, The Phys. of Fluids, 1, 495 (1958).
2. A, Simon, The Phys. of Fluids, (in press).

3. C. F. Barnett et el., Proc. Second Geneva Conf. 31, 298 (1958).
4. I. V. Kurchatov, J. Nuc. Energy 8, 168 (1958).
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the neutral breakup centers as well as an increase of the ion breakup centers
and hence has & back effect on the input trapped current.

A complete algebraic amalysis of the steady state equations has been
achieved in the case when one cen neglect the contribution of the molecular
jons to burnout or to breakup of other molecules as compered to the effect of
the trapped ions end the neutral gas. (This is a highly valid approximation in
almost all cases of interest.) The total mean free path A of the injected
molecular ions is then: ’

° * (1)

>
]

=i
+

>
02
Q
+
B
(Y

where ﬁo is the average neutral density external to the plasme region and n, is
the trapped energetic ion density. (It has been assumed that the slow ions re-
sulting from ionization ¢f the neutrals in the plasme region contribute equally
to6 breakup as do the neutrals themselves. The sum of the slow ion and neutral
densities in the plasma interior should remain equal to the external neutral
density even after burnout.) The probability that a molecule will break up
after a path length x is then

-x/A dx
p(x) = 7/ & (2)
B
vhere
1 s o0 +
—_— = a
e = N + 0% (3)

Hehce the percentage trapping is found By integrating Bq. (2) over all space.
The result is

.
%B.U.=§—- °of 4B (4)
B l1l+NO L+ n+6ﬁ L

This leads to the following steady state equatlion for the ion density:

ﬁ o‘oL +n G'+L % no v
% OABc_o + Bo-+ - ?Ef cX + HEGEVP (5)
1+ Nb B L+ n+ B L 1+ ;3 n+da+
o .
here
F)
=7 I+N
A 2]
Nﬁ - . + (6)
n o, vy
g + d
++(§) —3
v P
(1+5-0.09)
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Here I is the injected (number) current of molecular ions, V the plasma volume,

2 the mean chord length of the plasma volume, v the energetic ion velocity and
v, the neutrel atom velocity. The charge exchange cross section 1s denoted by .
Ocx, the sum of the charge exchange and ionization cross sections is denoted ypy £

a* (oa =d; + d'x), and O, is the "effective 90 coulomdb scattering cross
section.’ Flnally, the pumplng speed of the system is denoted by 8, Ny is the '
initial neutral density before the beam is turned on, ['is the fraction of input -
molecular ions which come back as neutrals (P < 2)., &is the fraction of slow
ions which do not return to the system as neutrals after striking the walls and

P is the usual mirror loss probability.

Equations (5) and (6) combined constitute an implicit equation in the
variables n, and I. Thus we have

£f(n,1) =0 (7)

It cen be shown that I is uniquely determined by a choice of n,, and conversely. i
that there are either three or one real positive values of n, Tor any given I.
As a result, the variation of n,_ with I has the general form shown in Fig. 1,5
whereas the corresponding curve for DCX has the form shown in Fig. 2.

The multiple roots occurring in Fig. 1 have a straightforward physical
interpretation. In region 1 neutral burnout has set in. The steady state
solution i1s achieved by balance bhetween charge exchange loss of the trapped
iong and feed by breakup of the molecular ions om the neutral background (mirror
loss is negligible). The second solution in region 2 corresponds to the point ‘
at which the ion density has risen and the neutral density has fallen such that i
the breakup on the ilons now is the same as the previous breakup on the neutral
gas. The charge exchange loss remains the same since it is proportional to the
product ngn, (where ngy is the average neutral density in the plasma region)} and
since, after burnout,ng A’ 1/n,. The final root of region 3 corresponds to
the point at which mirror 1oss becomes more important than charge exchange loss.
It is clear that roots 1 and 3 are stable while root 2 will be unstable.

An implicit equation for the upper critical current {U.C.C. in Fig. 1} has
been found and is as follows:

. N (—l;- I+ No)crcxvv (%—l) [1 + A o’BOL + (Q-T'{—l) o‘B"'L] (8)~
() o

where
. s 1/2 ‘
g = ((\5 1+ | E— ot w (9)
GB 2]

(10)

=
I
<|h=l
+
1
NS
<
A
+

5. A recent paper by I. N. Golovin (Harwell, April 1959, unpublished) states
that Kuznetsov and coworkers have obtained numerical results indicating a
behavior of this sort.
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Ive:, :
L
A=(§I+N°) [1+(¢-1) "ﬁ%]% (1)

The corresponding plasma demsity is (¢ - 1)/K. This equation for Iy ¢ ¢, can be
solved quite readily by numerical means. It will be necessary to inject this
U.C.C. in order to attain a high plasma density when the density is being in-
creased from below.

In some cases there will not be a solution of the above equations, which meaﬁs
that burnout is not possible. The condition for which burmout is impossible-is
that

[shie
+ Z g+ Vvo (12)

The approximations which are involved im the derivation of Egs. (8) through
(12) will break down if the resulting value of ¢ [as defined in Eg. (9)] is not
larger than unity. In this case, no simple expression equivalent to Eg. {8) has
been found and we must deal with the general solutions of Bqg. {(5). HNumerical
studies have so far indicated that the characteristic curve is still s-shaped in
this region although it is much steeper and seems to be tending toward a DCX-
shape.

A simple expression has also been derived for the lower critical current
(L.C.C. in Fig. 1). This is

fren)
~ (’e’l + Nyt O,V

L.cc. 7% L-Z(Z -1 (13)
- (O'B+L K)
where
_ 1/2
I P vaJ 1
S = [v—(5I+NO> ; ﬁ (1)

The corresponding plasma density is given by . Once a high plasma density has
been obtained, it may be maintained by steady injection of a current larger than
the L.C.C.

Details of these algebraic calculations and a summary of numerical results ...
will be given in a future publication. I am greatly indebted to Drs. R. C. Gilbert:
and R. E. Hester for calling my attention to the possibility of multiple roots ;
in the gas breskup case.
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PAPER 13

ABSOLUTE CONTAINMENT OF CHARGED PARTICLES
IN A MAGNETIC FIELD

Js By, Tayior
Atomic Weapons Research Establishment,
Aldermaston, Berks., England.

Abstract,

In a magnetic field of the "mirror" type certain particles
are "absolutely" contained irrespective of the constancy or
otherwise of the megnetic moment. A criterion for absolute
contaimment is derived and shown to ressemble that for contain-
ment on the adiabatic approximation.

Introduction.

The argument for containment of a particle in & magnetic mirror, in
e absence of collisions, is normally based on the adiabatic invariance
the megnetic moment. This is not a true constant of the motion, and
- expect arguments based on an adiasbatic invariant to be valid only if
e Larmor radius were very small compared to the dimensions of the field.
ere are, however, machines such as D.C.X. where this is certainly not
ue .

In this note, therefore, another principle of confinement is discussed
led sbsolute conteimment, (1) which only depends on real constants of
the motion. This principle is more restrictive than the adisbatic one but
.complementary to it in that it applies when the Larmor radius is
mparable to the field dimensions,

The condition for contaimment on the adiabatic approximation is

L B

m
g
Wl Bo

ere W is the total energy and W1 the component perpendicular to the field
the point where this has the value By»

The existence of absolutely contained orbits has been noted by seversl
workers notably at Livermore and Oak Ridge.
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Absolute Contaimment

The motion of & cherged particle in an axially symmetric field is
governed by the Hamiltonian

2
A 2 2 /[P eA
se g oteet (2o 2]

wherepr=mi', Pz=m§pPe=mzb+%rAaJﬂAistheecomponent of

the vector potential. It is convenient to introduce instead of A a streanm
function

e
w--;rA
then
g = 1% =, _1 &y
s r *"T% o%°T o

so that ¢ is a constant along a line of force.

To avoid confusion we shall consider a positive charged particle
moving in a field such that B, is also positive®. Then ¥ > O and

2
S 102402, (P ¥
sem el (o) ]

pe=mr26+v=L+v(say).

The particle is certainly restricted to that region in which the
kinetic energy is positive i.e. to the region for which

.
- 3
|Lo+v° v | <eEr 1)

where € = 2mH and the subscript zero denotes initial values. We can
therefore say, without invoking any approximations, that the particle is
ebsolutely contained if Eq. 1 defines a closed region in the r, z plane.

There are several ways in which one can decide whether this criterion
is satisfied but a useful cne is the following graphical procedure. For
any plene z#z; we draw ¥(r,z;) against r, and on the same diagram draw the
region defined by Eq. 1, This region is bounded by straight lines and two:
distinct cases arise. If (L, + vo) > O then the region is as shown in )
Fig. 1, while if (Lg + ¥o) < O it is as shown in Fig, 2, From this diagres
one can immediately see what values of 'r' are permitted at any plane
z=2. [e.g. in Fig., 1 the particle canrange from r, to r ] Thus we can
construct the allowed regions in the r,z plane. IT will be seen fram
Fige 1 that if L, + ¥g > O then for every plane z=z; there will be same

* There is actually no loss of generality in this.
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3 W

‘liowed values of r, and the particle can always escape. Hence the first
ondition for absolute contaimment is

Lo + *o < 0.

hysically this condition means that the particle orbit encircles the axis
f symmetry.

; On the other hand if L, + vy < O as in Fig, 2 then it may be that faor
ome values of zj (as e.ge Zpin figure) there are no allowed values of r.

this case the allowed region in the (r,z) plane is closed as in Fig. &

and the particle is absolutely contained. The criterion far the particle
be unable to cross the plane z=z; is that the curves

1
= = ¥-3
v v(r,zi) and ¥ L0 t¥ +e3r

uld not intersect.

This condition can be expressed, approximately, in a form similar to
t obtained on the adiabatic approximation.

Suppose that the field has the usual 'mirror' shape, that the plane in

Lch B, reaches a maximum is z=zy and that on this plane B, can be regarded
Gonstant and equal to Bm. Then at the plane of the mirror

s S 2
¥w(r,2z) 7e Bn T
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Similarly if z is the plane of injection

If we define the transverse kinetic energy with which the particle
was injected® as

%mv% =W

then the criterion for absolute containment can be written in the form

¥ 5-.(1_-_1_151.1 )
w, < 2 B (2
1 o

where y is defined as -LO/W .
o

Comparing this with the result obtained on the adiabatic approximation
it will be seen that it is a more stringent condition since the expression

4(y = 1)
2
y

is always less then unity and attains this value only for y = 2.

The corndition y = 2 corresponds to the case of a particle injected in
such a way that the radius of injection is equel to its Larmor radius.

Conclusions

In a magnetic field certain particles are absolutely contained
whether or not their magnetic moment can be regarded as constant. The
orbits of these particles encircle the magnetic axis and satisfy a
cordition such as (2) which is generally more stringent than that deduced
on the adiabatic approximation but reduces to it for particles which are
injected so as to encircle the axis symmetrically.

The conditions we have found are sufficient to establish contaimment,
it is interesting to speculate whether they are also necessary, in other
words whether all particles which do not satisfy (2) actually escape. The
Ergodic hypothesis would lead us to suppose that they would. However,
unless we cen estimate the time it takes for the perticles to escape, this
point is of only acedemic interest.

In most mirror machines the Larmor radius is small compared to ay
significant dimension and one would expect the adiabatic approximation
to be a good one. However in D.C.X. the Larmor orbit is comperable with
the dimensions armd one might well doubt the validity of the adiabatic
approximations. However it is just in this case that one can use the
principle of absolute confinement which is in this sense complementary
to the adiabatic approximation.

¥* Note that the 'transverse' energy is now defined as that in the 0=
direction rather than that perpendicular to the field.
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PAPER 14

ON PINCH STABILIZATION OVER LONG DURATION

George S chmidt*
Stevens Institute of Technology

Hoboken, New Jersey

and

I. Shechtman
Israel Institute of Technology

Abstract

Long wave length perturbation modes of a linear pinch can be effectively
stabilized through the use of a concentric conducting cylinder, In practice
the finite conductivity of the cylinder prevents stabilization of slow per-
urbations. For the stabilization of these modes permanent diamagnets are
ifequired. Some methods are proposed for simulating such diamagnets with
he help of liquid metallic walls in fast motion. Arrangements are shown
for isolating static magnetic fields where the moving liquid metals perform
:’he function of a diamagnet with A4¢ = 0.

Perturbations of long wave lengths in a pinched discharge are known to
stabilized by a conducting wall". The working principle of this method can
teadily be seen in Fig. 1. When the discharge is displaced from its central
position occupied in a., to that of b., the field in the vacuum becomes distorted
while the magnetic field inside the condensor is '"frozefl'!. The distorted field
erts a force I on the discharge tending to push it back to the central
equilibrium position.

As the conductivity@q is finite in any concrete case {except for super-
nductors, but they don't work in the presence of strong magnetic fields),
is obvious that this method works only for rapid perturbations, where the

R. J. Tayler, Proc. Phys. Soc. B. Vol. 70 1049(1957)

* This work was performed while in residence at the Israel Institute
of Technology

69



q1 am8ryg




haractenstm time of perturbation '_]" is much smaller than the time needed

;¢ the perturbation of the field to penetrate the wall. This latter is of the

rder of Jp <~ Mo 3% where { is a measure of the linear dimensions of

e metal and A, is the vacuum permea.bility2 (MKS units are used). When
77fthe perturbed field perietrates the wall unhindered and the stabilizing
fect completely breaks down. As]‘ is only of the order of a few milliseconds
Pra,cucal arrangements it is worth wh11e to look for methods applicable to
pparatus that might be designed for ste ady or quasisteady regime.

One method proposed here is based on the use of a diamagnetic wall.
is obvious (considering e. g. the mirror images) that a field is created
nding to push the discharge to the central position, no matter how small the
erturbation frequencies and velocities.

If we have for example, a wall made of an 'ideal diamagnet! (/4 = 0. B = 0).
ne field of a discharge transplaced from the center will be as in Fig, 1b in

e vacuum region, while the conduc or remalns field free. This field is

deed the unique solution of the | 3% f/anL equation in the vacuum region
ith the boundary conditions on the wall for the normal component B; = B2 =
his solution is obviously independent of the history of former processes, in
ontrast with the case of an imperfectly conducting wall.

1
(=]

In nature - with the exception of superconductors - materials with very
w susceptibilities only are known. Methods can be found however, to imitate
amagnetism in a certain sense. Two of them are outlined as follows:

I. One method is to set a conducting fluid in turbulent motion.
8 the field is frozen into the fluid the chaotic motion of its elements re-
ults in a destruction of the macroscopic time average field, as described
y Liandau and Lifschitz-> In a real case this effect is naturally limited
y the finite conductivity of the fluid. The field is therefore not complete-
frozen and the diamagnetism is imperfect. Considering conditions
r the setting in of turbulence it must be remembered, that besides the
sual limitations (Reynolds number) the presence of a magnetic field im-
oses another one: the energy density of the magnetic field must be much
maller then the turbulent kinetic energy density.

2, The second method is to pump an originally field free conducting
uid sufficiently rapidly through the region concerned. If the time T in
hich a fluid element passes this region is much shorter than the pene-
ation time]’, the fluid remains field free. This means that in our ,
xample where T = L/¥(L is the characteristic flow length and »* the

nid _velocity):‘u‘>> L 2 Examples of possible arrangements are
hown in Fig. 2. Calcfllatmg this relation for liquid sodium - taking
=1md=0, 1m - we obtain ¥ 27 ¥ “¥c. Of course a sensible dia-

Lyman Spitzer, Physics of Fully Ionized Gases - Interscience
Publishers Inc. N.Y. 1956, p. 38

L. D. Landau and E. M. Lifschitz, Elektrodinamica Sploshnich Sred,
. Pbage 302, Gosudarstvenoe Izdatelstvo Tehniko Teoretitcheskoi litera-
~tury, Moscow 1957
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gnetic effect can be obtained byv'z;:;l:;_zl In a practical case the
dilizing fluid might act as a coolant too.

In principle other methods to push the pinch back to the center can
ound. This is the case for example for a rotating conducting wall.
an be shown that in the case where the field of the perturbed pinch
etrates the wall this exhibits a tendency to drag along the pinch in
rotation. If a phase lag exists a force acting on the pinch is created
ing a component towards the center.
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BOUNDARY LAYER FORMATION IN THE PINCH

S. A. Colgate, G. Gibson, and J. Killeen
University of Califommia, lawrence, Radiation [aboratory

I. INTRODUCTION

Containment of plasmas may be achieved by either vacuum magnetic fields or
pinch magnetic fields. Vacuum magnetic flelds are created by external coils,
vhereas in the pinch device the primary curreat is induced in the plasma, and
without this current there exists no conteining field. The current and magnetic
field epatial distributions are of interest since the degree of stability of the
pinch plasma colummn is dependent on the sharmness of the boundary.

In this paper processes that determine the pinch current!s spatial distribution
for times prior to the implosion of a deuterium plasme are exemined. A one dimensional
problem is treated vhere there is an externally appl;ed stabilizing magnetic field
in the direction &f the electrii}sigch immobilizes the charged particles in the plasme;
It is assumed that this field is of such a magnitude as to make the heat and charged
particle diffusion terms across the field negligible. 1In this menner, wall effects
are also conveniently eliminated. Further, the strength of the self or piaching
megnetic field (component of the magnetic field normal to the electric field) is
considered to be be small relative to the stabilizing magnetic field over the interval
of time for which the results are significant. Hence, mass motion of the plasma 1s
ignored. As a result of these essumptions, the stabilizing field does not appear
explicitly in the calculation. The validity of these assumptions is examined in the
disucusslon of the results.

The plesma equations of Wyld and Watsonlare generalized to include spatial

dependence. The different particles are treated as having local Maxwellian

lWyld, N. W. and Watson, K. M., Gatlinburg Controlled Fusion Conference Proceedings
{(June 47, 1956)7.I.D. 7520 .
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tributions, i.e., temperatures are assigned. This is a limitation on this vork

ince for the particle densities and electric field strengths utilized i1n pinch work
@e':‘;]_ectron.n should tend to "run-awey". However, should this effect result only .

B ;;’reduction of the effective resistance then within the framework of this calculation
. ':Skin depths should be smaller than those calculated. In addition to the electron

a'lzion temperatures the variables of the problem are the percentsge of ionization,

+ resistivity of the gas, and the current density. Since the current and resistivity

e:" interdependent the plaema equations ere coupled to the field equations.

is set equul to a constant applied electric field
At the boundery of the plasma the electric field/minus a self induced electric

'eld. It is also assumed that the current density and its derivative go to zero
t.la.rge distances from the plssma boundary. Some physical situations forvhich this
dei is applicable are discussed along with the results.

The computations were performed on the I.B.M. TOk at Livermore.

. FIELD EQUATIONS

Hx()’ﬁ)

Plaswma
Bouwdal—y

Fig. 1 The Field Variables

'The problem considered (see fig. 1) is one dimensionel, i.c., the electric field,

E the magnetic field, H, and the current density, ,], are functions of y end t.

xternally applied constant stebilizing field. The field eguations are then

aEz lan

3‘,—-=-E—-§t—,asy<m, (l)
oH

<= -- 24, sgv<o, (2)



Ez=qz‘jz’ ay<o, (3)
where n {y,t) is the resistivity of the plasna.

Differentiating Eq. (3) with respect to y gives (let §J = j, and n = n )

Z—-

(nd)-.

ol ¥
o

Then from Bq. {1):

1 dBx _d°

e o E (T\J) .

Now differentieting the above yields
3% .

> ot 3.&72 (nd)

a0l

Differentiating Eq. {2) with respect to t gives

aaﬁ byt

X kg
ot oy e I °

Using Bx = M Hx then gives

(¥)

{0
ﬂo
®
g
~~
2
(Y
—r”

foragy<® , t>» 0.

Equation (4) is the differential equation to be solved for the current density,
J (¥,t). It is a nonlinear equation since n depenmds on j through the plasma
equetions.

The boundary coanditions which are used for Eq. (4) are

j» O0Oas y—> o , (5)

[s§ .
and E - L 3F=n(at)i(at), (6)

vhere E0 is a constant spplied electric field,

L 1s & constant inductance,

ani 1 is the total current, i.e.,

1=.f'jdy' -
7

Eq. 6 may be rewrittem as
00

EO~L—§-7t- [ jay=n(st)J(at),

or

®
E -L‘[ —g—% dy =n(at) j(et).
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éﬁﬁatituting Eq. (4) into the sbove equation

2 [s 9]

2
B - _LI;% J: -SF (nd) @y = n (a,8) J (g,1),

or
: 2 .
B + Lec P = .
o T %Jl{am 1 (2,%) J (a,t),
vhere
€ M-}O Bs y.,o)
oy
2
Let = h&
&= by (8)
then the boundary condition becomes
B, = 0 (at) i (a8) - o X1
¥y =a. (9)

As en initial condition the resistivity of the gas is taken to be uniform,
i.e., 4 (¥,0) = n (0). The initlel current density may then be taken as zero,
or an initial current density may be chosen satisfies the conditims es y — o ;

0.ges

(y-2)
5 (,0) = 3, e /8 (10)
and to be comsistent with the boundary condition Eq. (8) we have
i = Eo 1
o~y 12 - (11)

ITI. PLASMA EQUATIONS

The energy belance equation is

quz—_-a €0 agz +"%{‘[§ nee+%niei:” (12)

iﬂh.ere n {y,t) is the resistivity of the plasma,
. J {¥,t) is the current density,
€, 1s an average ionization potential (16.2 ev),
o € is the average energy expended per ion pair (ion plus electron)
a_ (v,t) = ni(y,t), the electron end ion densities,
8, (y,t) = XT_, the electron temperature, and
8, (y,t) = x T,, the ion tempereture.
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The left hand side of Eq. 12 is the rate of ochmic heating per unit volume., It ig |
assumed that this energy goes into the lonization of neutrals, and heating of the
charged particles. The first term on the right hend side of Eq. 12 is the energy
expended on ionization. It essentially represents an energy drailn on the electrons.
Now the ionization of the deuterium molecule masy proceed in various ways, and in
general 1s not a one step process. However, this complexity 1s avoided byﬁreatin,g
the deuterium gas as mpnatomic with an average ionizetion potential, € ~x The cross
section for ionization 1g teken to be the same as for the ionization of D?.' Energy
losses, such as inelastic collisiona of electrons with neutrals, are lnecluded in the
factor o, For example, if on the everage @' excitation collisions occur for each
ionization collision with the same dissipation of energy, then the rate of thils energy
loss per unit volume is o' €_ :‘% . We choose & =g. (bwo)

Because of the mobility of the electrons, theilr temperature increases much faster
under the influence of the electric field than that of the ions. For eldctric fields
of the msagnitude emnloyed 1n pinches the electrons will repldly reech a kinetic
temperature corresponding to the lonization potential.. Because of the mass difference,
the electrons give up little energy to the aeutrals during thelr lifetime, i.e., the
lonizetion time is short as compared to an energy exchenge time. If is for this reeson
that the change in temperature of the neutrels is not included in Eq. 12. At the
completion of ionization the electrons lose energy primarily by transferring it to the
ions. It 1s assumed that the Rremstrahlung Radiation is negligible for the electron
temperatures achieved during the time before the implosion. Charge exchange effects
should elso be small for the times of interest at the densities and energies for this
problem.

The resisgtivity of the partislly ionized plesma is

m
"= g (v; +v), (13)

wvhere m is the electron mass,

e is the electron charge

vy is the collision frequency of electrons with ions, and

L is the collision frequency of electrons with neutrals.

Electron collisions with neutrals are retained in the definition of electrical
reslstivity since the collisions impede the motion of the electrons in ﬁe direction

of the electric field.
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The effective v, is

i
v _ [ = 3/2 34 n (bm-_ax) Pi (llb)
- 7 »
i Wo0.582) ‘[ZT bnin 8 3 2
e

2
;fﬁere the factor 0.582 accounts for electron-electron collisions, and
36, 1/2

vo= (o, -n) (—4) o, (15)

~here B = gas density,

cross ssction for electron collisions with neutrals.

-16 .
We teke 6 = 3 x 10 cne.

7

/i: md ' o=

lof,e that the resistivity as defined does not depend on the ion density, ni, or

tGMP erature; 91 , but only on the electron tempersture and the fraction of ionizatim.

The peutral perticles are treated ms stetionary tergets {f.e., zero temperature).

The lonization equation is .
€
ot " P (no- ne) 9 Ve (16)

fvihere A i6 the lonizetion cross section; and Ve is the electron velocity.

3
The ionizetion cross section is obteined by fitting published experimental results.

= 0, ecCe, = (16.2) (1.6 x 10'12) ergs

4 € 2
4 1.20-'?0- (—e—o-- lb) R Eo<€<‘+€o

‘Q
u

€

9 = 1.36-0.Ol+To-., keo<e<20eo

o = 0.56 , €>20 € - (17)
vhere 2
h, oi ie expressed in units of ne, .

The quantity ?7: is obtained by averaging over a Maxwell-Boltzmenn

1
[+] =
o, v =-2 a02 {2n ;-e' )2 ['(-0.8- 1—3* %.- + 0.8 iz,)e-'a
+ (0.16 -0.987 %’ - 0.8(11—‘2 Je ¥, (0.8 - 0.08 %)e-zoa]’
(18)
€
2
2 -
e

‘:;;jj’S‘ee Spitzer, L. Physics of Fully Ionized Gases, p. 64

e.g.Mott, N, p. and Mamsey, H.S.W., The Theory of Atomic Collislons, Oxford Press,
Page 245, 1959
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The equation giving the rate at which energy is transferred from electrons to

ions is

where M is the lon mass.

IV SUMMARY AND METHOD OF SOLUTION

n n
e i R
Let £ = n—o- = ﬁ; , and let Qe s 91 be expreseed in units of € the
ionization potential. Let 7 be in units of . = Ay then we can
o c2 ?
summexrize t.he equetions to be solved
) 2
o o ond) (20)
ot 2
oy
AgE = {e;t) § {e,t) - 2 %ép—{r
=3, (21)
1/ - 3
neA (% -1)e 2 4+ a_e
2T e 37e (22)
Pa L") g e, :
e i 20 1 Jf .2
3 " s (T 8% v 9) K A F N
(23)
3e S
1. ate (6 - 8,)
) 5 e e i (24)
1/2
df ; 4 - 2 L
E:A\hf(l-f)ae (o.8+§ee o.Bee)eee
o, - %
+ (-0.16 + 0.987 9, * 0.8 R Y e R
.2
+ (0.8 + 0.08 Be) e 8, (25)
wnere the constants are
2
=5 T
n
o o
A, = =2
2 % eQ /3 m €
32 2

max

hy = (50 B s ot

min
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The solutions of Eq. (22) - (25) with J = constant is the problem considered

: i 1;1 the
an be solved mmerically,

1¢ we let 1 = constent, Eg. {20) becomes

.

th boundary conditioms

» 83y< @ , £20;

g %

T

3
B.gt - "i"? = —
3 ) aay. -

3 (y,8)20 as yo®

o and initial condition

.y-a
jly, 0) = 3¢ B
. dliere ol g = —

T_hié problem can be solved by using the Laplace transformation and the

-txe-r - a y - a
e {_nsin—y—— X + X €Os
2 A

solution is

a

paper of Wyld and Watsonl. The resulting set of ordinary differentiel equations

x}dx

[Se
F\
210

J (Y’» t) = Tl— 5 5 s
x (x= + -Zné) (x= + 2)

o]

3

‘80lve m get of fipmite difference equations. Consider the mesh

“talculetion, In order to solve the complete system of equations (20) - (25), we

The above solution to this special case cen be evaluated in terms of error functions

d is quite useful in checking the results in the early stages of the more general

Tt
; }At ay
- -t - T f >' Y
Bo RO B Y L
Miere g - 2 d\y
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The implicit difference equation corresponding to (20) is

n+l . n At n+l n+l n+l n+l n+l
J - d = — {1 J - 2q J + oM, j

At n n n n n n
— 1 J - 217 J + 01 J ],

2+1 241 2 1 £2-1 2-1
2(63')2[

=g +1, e -1 .

The boundary condition at y = a becomes

n+l n +l
E = n, Jt - ‘Eo (nz ‘1 3 n+l n+l )
o o o 2 +1 Jd
o o} ﬂo

The maximim value of ¥y in the mesh is IAy. 1In order to treat the imposed conditions
on J as y—=2o0 , '11.. is set equal to zero, but the distance LAy must be teken
large enough so that the solution is not affected by changes in the cut-off. The
cut-off distance 1s a result of numerical experimenietion and differs with the various
cases presented. The method of solution of the implicit difference equetions is given
by Richt.uverf"

The Eqs. (23) - (25) must be solved at each value of £ in the mesh. Since they
do not contain spatial derivatives, they can be considered as ordinary differential

equations end solved by a stendard method for each £.

V. RESULTS AND MODELS

It 15 known that in addition to an externally applied Bz’ a surrounding
conducting wall enhances the stability of a plesma columm. Suppose in Fig. 1
that the plane st y = O is a conductor. If the region 0<y<e s occupied by &
dielectric, and s plesme occupies the region yZa then a cherge density is
deposited on the surface of the dielectric vhich neutralizes the polarization
charge density and the electric field lines in the plasme then do mot terminate on
the surface, but run in the z direction as assumed in the model.

We can derive the boundary condition at y = a under these conditions.

Integrating Bq. (1) with respect to y gives

Y
a Jd 1 9
a =" T 3t Bx (a’ t) - T Bx (¢, £) a¢

a

E, (v, t) - E

4IR. D. Richtmyer, Difference Methods for Initial-Valuw Problems, Interscience, N. Y.

page 10l1.
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‘gust beve B, {y, t)=>0 as y>o , o0

5= 2% 3 (e - 1 b%[ By, 0 ay  (28)
'I;;;Erating Eq. (2) gives -
o L Yy
nx<y,t>-ux(a.t)=-c—"/a(c.na;
el a
wamst have HX (y,t )'-?0 as Yy —» 0 , B8O
(o0 = 2 [ ey (27)
“gence ® ¥
. N
KX(Y,‘G)=')L::' Iy, t) ay - = (g, v)at,
a oo a
B (y, t) = = ] J (g t) ag (28)
y
Using Egs. (27) and (28} in (26) we have
(o 0] [o.0} ja o]
E LT { e, t)ag + 2 D a (¢, t) a
o * T2 & ’ 2 3t y )3 ¢
a a Y

._ :"Iﬁfc.egrating the second term by parts we have

® @
o f‘g‘g%[ajj(c,t)dz-a/ﬂbt)di* vyl t)ay
a a

t=
u

or oy ® N
B - 2 / v S% ay (29)
a

: ROV ueing Eq. (&) 1a Eq. (29) we have

@®

2
o] 2
Ay

a

N ENE

e have assumed 1 (y, t) J (y, t)—0 as y—3o ,

ﬁdifweassumey 6—3%}—1)-———‘90 as y—>mo
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then

)
E,. = (s t) ) (s t) - a%ﬂy‘u‘
y=a

is the boundary condition at y = a. This corresponds to Eq. {(9), where ‘a is
nov taken to be the thickness of an insulating region between the conducting
shell end the plasma. This distence fixes the inductaence in Eq. {6) by using Eq. (8);
For an a = 1 cm, We present two cases of interest. The first case is for an
applied electric field E = 100 volts/cm, and the gas demsity B, = 10%9/cm3,
Thia case corresponds to pinch devices at Livermore end Los Alemos. In Fig. (3)
the values of the plasma and field varisbles at the plasms boundary sre plotted as
a function of time. In Figs. (4) and (5), J (¥, t) and B {y, t) are plotted ss a
function of distance from the well for successive times, In Fi}.(6l the plesma
veriebles are plotted as a function of distance from the wall at a time corresponding
to completion of fonization at the plasma boundary.
The second case for & = 1 cm. is for an E_ = 2 volt/cm eand = 10%3/em3.
This case is intended to correspond to a lerge pinch device such as Zeta at ffe.rwell.
Similar results for this case are presented in Figs. (11) - (14).

Another physical situation for which the model applies is the following

Fig. 2. Torus Model He

Congider a torus with a non-conducting shell; and assume that the minor radius,

r,, is smell compared to the mejor radius, R, and that the current skin depth, 6-,

e s r
is small as compared to the minor radius; i.e. _R_o <1 ; ﬁ << 1.
== Yy 3 °
Integrating VY x H = ~ J over the area enclosed by the curve A B C D,
vhich is within the current layer, gives r
(o)
- a
H " ads = -j::L f 2xr jar
o
T
) o
4n
or enr Hy = — 2=x roj J @ r, using the above assumpti?
o (Text continues on page
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LB A

T

Eo = 100volts/ecm  ng=10'%/cm3
a=lcm
j =CURRENT DENSITY, amp/cm?

AL 2 AL

1

L 1 2 2141
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Figure 4
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B =electron temp.,i6.2ev. ]

8j=ion temp,,l6.2ev. 7

f=fraction of ionization

n=resistivity,ohm cm

all at 1.Opu sec
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Figure 10
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guppose the field in the symmetry plane containing the torus is obtained by
‘rea.tiﬂa the torus as a single circular current loop. This field may be approximated
the snalytic expression
i 2 4
HQ ¢ [; * ﬁ}
The total flux due to the plasma current vhich passes through the summetry plane

and enclosed by the torus is

r

¢-2np.f Hy (R-r)dr,

R
and using the above expression for He gives

§ =4 xpR i laz-a-lna],

c
r

[o]
a = —
ere R.

sing the analytic expression for HG gives a totel enclosed flux which agrees to

ithin 1/2 o/o of the numerical result. Kow in the center of the torus, 1.e., at

= R, assume that there is a changing externally applied magnetic field which gives

;:_in constant electric field, Eo’ at the plasma.

1 1 o
c 2mR =t

ence the electric field at the boundary of the plasma is
- . 24 - - =28
B =5 2 [ae a - 1o a] at.

In our one dimensional model we have from Eqs. (6) end (8)

_p . bxp !
By = By 2 ° %

for the torus, so
L . -e-mo (30)

o

Q. (30) enablea us to calculate an effective value of a 1in our one-dimeneional model

or a particular torus.

r
Consider a small torus vwhere T, = 5 cm and k—o- about % then :— is
i‘,&bout 2. For the case & = L0 cm. wve present a case with E, = 100 volts/em.

:a.nd 8 = 1015/cm3 in Figs. (7) - (10).
Now consider e large torus where r, = 50 c¢m., and R = 160 cm. then :— is
o

‘ bout 1. For the case a = 50 cm. we present a case with Eo = 2 volts/cm. and

‘8 2103/ em3 1n figs. (15) - (18).
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CIRCUIT DYNAMICS OF THE PINCH*

J. Killeen aend B. A. Lippmsnn
University of California

Abstract

Instead of analyzing in detail e portion of a hydromagnetic
pinch apparatus and replacing the remainder by a boundary conditien,
the entire pinch apparatus is treated as a single dynamical system.
A circuit equation and a mechanical equation, coupled together,
result. These equations describe the dynamical development of the
pinch and exhibit explicitly its dependence on the physical param-
eters (electrical and mechanical) of the system. As examples, the
equations have been used to analyze the snow-plow model and the
adiebatic pinch, ylelding curves that show the geometrical develop-
ment of the pinch in time, as well as the distribution of mechanical
and magnetic energies at any stage. Analogous analyses may be made
for other physical quantities of interest, and can be used to ad-
Just the parameters of the system so as to optimize specific pinch
characteristies.

Dr. B. A. Lippmann: I should like to talk about some work that John
Killeen and I did a couple of summers ago. The problem is neither particularly
subtle nor particularly difficult. In some respects it is trivial, and in a
minor way it is even useful.

What we did was to analyze the behavior of a pinch tube, including the
reaction back on the source. That is, instead of considering the pinch
tube in detail, and representing the rest of the system by a boundary
condition, we considered the entire apparatus as a single dynamical system.

There were several reasons for doing this. Ore reason was that it could
be done. Since everything about the external circuitry is known, there seems
to be little reason to legve it out of the amalysis. We also noticed that ome
can calculate everything in detail if the geometry is simple enough; for examp
one can derive expressions for the rate at which energy is put into the magneti
field, the rate at which work is done on the plasmz, etc.

The variation of these quantities as the pinch develops in time can be
calculated, and we felt that it might be quite useful to have this informati?
available. It is the fundemental prerequisite for a quantitative understanding

*This work was performed under the auspices of the U. S. Atomic Energy Commis
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the pinch, its diegnostics, and its design, and, in fact, that is vhat the
ﬁformation geined has been used for at Livermore.

If we consider only the simplest case, a pinch epparatus is equivalent
d g condenser and an inductance connected in series. The circuit equation

d
+EE(LI)—0

ere @ is the charge on the condenser bank, C is its capacitance, and L is
& inductance of the pinch tube.

We also have a mechanical equation:

rere W is the rate at which work is done on the plasma.

The inductance is known if, as we shall assume, the pinch tube geometry
s co~axial. However, we need a mechanical model before we can compute the
o be used in the second equation. We have analyzed two models: the snow
low model and the model of an adiabatic pinch. The snow plow model has
saning for the ordinary linear or toroidal pinch tube, while the adiabatic
ydel bears & strong resemblance to Zeta.

For the adiabatic case, the mechanical equation integrates immediately
scalise it can be replaced by the adiabatic condition:

PV’ = constant.

Lo . 2
1t P is proportional to 12/R » and the volume in the case of a co-axial
nch cylinder is proportional to R2. So we find:

IR7-1 = constant.
:is information is put back into the circuit equation, which is then
tegrated. John Killeen will show you some of the curves that result.

-'There is just one other matter that I think ought to be mentioned and
et concerns the validity of using circuit equations in problems of this
ype. .Suppose the geometry was much more complicated and suppose the
chenical aspects of the equations offered no difficulties, could the
ctrical features really be analyzed using circuit equations? The answer
"Yes, " in the following sense.

The circuit equations always work because they are a way of representing
olution of the Maxwell equations. However, one will not always encounter
ircuit as simple as the series L,C combination we have considered here.
eircuit was simple because dissipation, whether in the form of ohmic

§és or radiation losses, was negligible. In addition, we have assumed that
solution of the Maxwell egquations could be described in terms of definite
lons where the electric and magnetic energies were concentrated (C and L),
led together by only dominant mode interactions.
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In more general situations, we would expect to find radiation end ohmic
losses, as well as multi-mode interagtions. The circuit equati on would then
be replaced by a set of circuit equations, which, although complicated, could
be written down using the known techniques of the theory of guided waves.

I will now ask John to show you the curves.

DR. KILLEEN: In the first slide we show the equations to be solved

in the snowplow model. The circuit equation becomes

g—‘.[(b-lnn) %%J=-q ,

and the mechanicel equation becomes

af{..2 anf__ 1 dg°
dc[(l ) w{=- 7 & >
vwhere
"= g o5 9 2
= Rw ° = 2]=
10 Rw ﬂ/o
?:—-——-—t'~9—-— ; b = 1n '].BR% + Leg
107 9
\Ex (0) Epc 2x10 !p

The results shown for this model in the next few slides are for a device under
construction et Livermore. It is a linear pinch with tube length, zp = 30 cm,
The radius of the tube, Rw = 15 cm, and the shell radius, Rs = 16.5 cm. The

external inductance, Le, is lO-7henries. The charge on the bank, Q = 5.61 coulo

and the capacitance, ¢ = 18,7 x 10-6 farads. These characteristics give the folla

ing values for the parameters

I}

g (0) 10.6
b = 1.86
The results presented in the slides are for q(0) = 5, 10, 15 and b = 1, 2.
In the first slide (fig. 1) we have 1 (7), which gives the position of the
imploding current sheath. In the next slide (fig. 2) we have n (7) which giVBé

the velocity of the sheath. In the next slide (fig. 3) we have the current.
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The energy balance equation 1s

dUm
+ W+ = 2
¥ % 0

ere

W=A[;l°_- (%%)2 % (b-lnn)]

dUp, d 1 dgy 2
T = A —a't[ 3 (b - 1n y) (a)
veaF G D

ere

L

A = 100 Ry ﬂﬁo
{2x 107 4 o3
P

the next three slides we show these quantities for the ceses considered.

The equations to be solved in the adiebatic model are

d dg |_ _ =
dt(b'lnn) dv- q
dg .
=, S
ere 3 = a = 8 s
dq 2x107 ¢C1I
(@ P’ o

d'n, €, b are defined as before. We can solve the above equations for values

the paremeters which correspond to Zetsd.

e

t Rs = 50 cm.
Rw = 535 cm.
Le = 3.3 x lO_6 henries
ﬂp = 1160 cm.
C = 0,13 farads
Q@ = 360 coulombs {25 kv)
I0 = 50 x lO3 anps.

th these values b = 1.5 and q {0) = 13. In the next four slides (figs. 7 -10)
shown the results for b = 1.5, 3.0 and g(0) = 5, 8, 13, 20. The case q(0) = 13

rTesponds to a voltage at the bank of 25 kv. ' We should note that the current
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5 obtained from , and

“gor the case g{(0) =213, b = 1.5 the peak current is then about 300 kiloamps.

The shape of the waveform seems to correspond to ‘traces shown in the Geneve

)

pé,per on Zeta.
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PROGRESS IN THE ANALYSIS OF THE ASTRON E-LAYER*

Lewi Tonks, Consultant
Lawrence Radiation Laboratory, University of California

Livermore, California

Abstract

The E-layer of the Astron, even in its uniform portion far frorn the
ends, is complicated by the slowing down of the electrons, by their
scattering in angle, by the diamagnetism of the reacting plasma and by
possible rotation effects from the angular momentum imparted by the
repeated influx of the high energy E-layer electrons. As initial steps
in an analytical attack two simpler problems have baen solved. The first
is that of a cylindrical configuration of relativistic electrons, uniformily
distributed in azimuth and all having the same canonical angular momentum
and energy. This is in a uniform impressed magnetic field which is
modified by the E-layer electrons only. The second covers the generali-
zation to a spread in angular momentum but no spread in energy. In both
cases by basing the analysis on a delta-function distribution in constant-
of-the-motion space (a suggestion of E.G. Harris), the problem has been
reduced to the solution of a second-order differential equation in dimen-
sionless variables. The important parameters are (1) the ratio, G, of
the radius of the E-layer injection circle to the radius of gyration of an
injected electron in the uniform impressed vacuum magnetic field, (2)
the ratio h/h., of field strength within the layer and interior to it to the
impressed field, (3) the ratio sl/s or tl/tz, of the smallest pericenter
radius to theinjection radius, afd (%) the "number", (2 r_/y)} N, of elec-
trons per unit axial length of layer, where r_is the clasfical electron
radius, y is the ratio of relativistic to restmass of the electron and N
is the actual number of electrons/cm. The momentum range and density
distribution (in momentum space) are additional parameters in the second
problem, but every useful purpose seemed to be served by using the full
momentum range accessible to theelectrons (with one or two exploratory
exceptions) and by using a uniform density distribution.

The solutions to both problems have common characteristics:
When G lies between negative infinity and unity, the injection circle is

*Work was performed under auspices of the U, S, Atomic Energy
Commission, Some of this material also is appearing under the title
"Self-Consistent Field of Single-Type Electrons in a Uniform Magnetic
Field," Physical Review, May' 1, 1959,

This paper may also be identified as Report UCRL-5522, Rev.
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i locus of pericenters and the E-layer lies wholly outside it. This case
is not of physical interest but is covered mathematically by the range

5f G from unity to infinity, When G is less than 2, no field reversal

is possible up to the full limit of electrons which the layer will hold, In
¢tnis condition

(Zre/Y)Nmax 222G -2

&

and the ratio, hl/hZ' of interior to impressed field is

h,/h, =2/G -1

N {(max)

When G is greater than 2, so that with few electons present, the electron
yrations do not encircle the axis {but with many they will), the same
relations apply. The negative value for h,/h, shows field reversal.

For values of G in the range 2 to ~4 the transition, with increasing N,
from nonencirclement of the axis to encirclement, is accompanied by a
discontinuous decrease in h,/h_ followed by further decrease into the
ﬁegative range or within the hegative range as N increases toward N o
For values of G in excess of ~4 the hl/hZ = vs =N curves are doubleznax
valued in h, /h_ alone or in both hl/h and N,

A third problem is in active prScess of solution, The mathematical
formulation is complete, The generalization here is to electrons which are
allowed to slow down from their injection angular momentum and energy
according to the energy loss, but not scattering, due to the Coulomb fields of
the reacting~plasma particles, The diamagnetism of the plasma is still

left out, It has still been possible to formulate this very generally, but
iteration will be required to obtain the self-consistent field,

The fourth problem will include {it is hoped) scattering as well as
energy loss, The diffusion equation in momentum space has been derived,
but the actual attack has not yet been formulated,

e}
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PAPER 18

LONGITUDINAL PLASMA OSCILLATIONS IN AN ELECTRIC FIELD

B.D. Fried
Space Technology Laboratories, Inc.

M. Gell-mann
Space Technology Laboratories, Inc.
and California Institute of Technology

J.D. Jackson
Space Technology Laboratories, Inc.
and University of Illinois

H. W. Wyld

Space Technology Laboratories, Inc.
and University of Illinois

Abstract

The properties of longitudinal plasma oscillations in an external
ectric field are investigated. In a completely linear approximation, it is
und that the d-c electric field introduces essentially no new effects. A
quasi-linear approximation is also considered, in which couplings between
different plasma modes are neglected while the space-averaged distri-
tion functions are assumed to be approximately independent of time. In
this case, a Maxwellian distribution function is found to be always unstable
rainst the growth of very long wavelength oscillations.

I. Introduction

In the course of an attempt to understand in more detail the possibility,
ggested by Buneman, 1 that long range cooperative effects in the form of
owing plasma waves may provide a new mechanism for plasma resistivity,
e have studied the dispersion equation for longitudinal plasma waves in
esence of an external electric field. While we have not, as yet, succeeded
achieving a quantitative understanding of Buneman's mechanism, the
8ults concerning the effect of an electric field on plasma waves are self-
ntained and may be of value also in other investigations.

. We consider a plasma composed of electrohs and ions and assume that

O. Buneman, Phys. Rev. Letters, 1,8 (1958).
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the distribution function (in phase space) for each species obeys a collision-
less Boltzmannequation, with electromagnetic fields whose sources are the

plasma charge and current density. Since the two-stream instability which

Buneman considers involves only longitudinal plasma waves, we neglect the
magnetic field due to the plasma current. We also assume that no external
magnetic field is present. The problem is then essentially one-dimensional
and we have for the electron distribution function, f (x,v,t),

b

9f 9f e af
TV x  m EetEl gy =0 (1)

The ion distribution function, F, satisfies the same equation with
e/m - - ¢/M. The external electrical field E_(t) is a given function of

time, while the self-consistent plasma field, E, is determined from
Poisson's equation

9

=

= 4me [dv (F—f) . (2)

I

|

X

If E = 0, the linearized form of these equations can readily be solved.
The %esulting dispersion equation2 predicts Landau darnping3 if the
unperturbed distributions have no relative mean velocity and gives growing
waves if the mean velocities differ by more than € times the electron
thermal velocity (for T-1 = Te), where ¢ 1is a number of order one whose
exact value? depends upon the form assumed for the unperturbed velocity
distributions. It is the aim of the present paper to generalize these field
free results and to examine the effect of an external electric field upon the
plasma waves.

With the usual separation of f into a space averaged part, fo’ and the
fluctuations, fy, around that, we find that in a strictly linear theory f,

must be time-dependent. Consequently, the equation for f; does not have
harmonic solutions and there is no dispersion equation in the usual sense.
This is discussed in Section II. In Section III we consider briefly the
consequences of assuming f, to be time independent, as might be
appropriate in a quasi-linear theory which takes account of the effects of
the fluctuations upon f, but neglects the coupling among the fluctuation
modes. In this case a dispersion equation of the usual sort can be derived
and leads to growing waves with a Maxwellian f, even in absence of 2
relative electron - ion drift. We conclude that either the quasi-linear
approximation with time-independent f, is inherently inconsistent or else
that it demands a special form for f,, different in character from a
Gaussian. )

II. The Linear Theory

It is convenient to make a Fourier expansion of the x dependance of
the distribution functions,

flvit) = n f (v,t) + £ (v,t) e X
(o) K k

ZJ. D. Jackson, "Plasma Oscillations," Physical Research Laboratory
Report, December, 1958.

3Landau, J. Phys. USSR, 10,25 (1946).
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with similar expansions for F and for

E(x,t) = ZE_(t) o 1kt
k

*
Reality of f, E requires fk = f ., etc. The space averaged density of
- both ions and electrons is indicatelé by n, and fo is normalized to 1.
{The k spectrum is made discrete by using periodic boundary conditions

. with a period L so that the allowed k values are multiples of 2w/L.)
. The equations for the Fourier amplitudes are then

8f eE_8f . Of
o _ e_° . _¢ sg k (3)
ot m Ov xnn0 kDv
o1 eE bf, n e 8f ot
k. e k o] o _ e k'
PR AW T By T m ) Bk T (4)
ik Ek = 41Tefdv (Fk—fk) . (5)

In the linearized approximation we drop the right-hand sides of Eqs. 3 "
and 4. Then Eq. 3 is solved by taking f, to be an arbitrary function of

u = v+ (e/m) Ee t') . (6)

Introducing u and t as independent variables in place of v and t, we can
write Eq. 4 as

afk R ¢ n_e dfo
— 1 — — 1 1 = ——
s+ +ik|u (m) E_(t') at'| £, —E, 37 ¢ (7
o
with a similar equation for Fk'

Since the coefficients are time dependent, the solutions of Eq. 7 are not
‘Plane waves and we cannot find a dispersion equation in the usual sense.
‘However, we can solve Eq. 7 by using an integrating factor,

t
. Foer g df
£ 0, 1) = o ikut-pel], n = at' E_(t) Giklut'-t'] 2 +4, (1,0 (8)
o
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where

t
p(t) = (e/m)| dt' (t—t") E_(t')
o
The electron dengity is then
o n e t
n (t) = du £, (u,t) = P k2= dt' By (') (£~ t")
-Q0 o

T [k {t— t')] oI e [ kt, 0] )

where the bar denotes a Fourier transform with respect to u,

(s o]
— -i e
£ (0) = due™ ™V f_(u) (10)
-0
@
— iud
£,10,0) = du e ' £ (u,0) ,

-0

and an integration by parts has been used to transfer (d/du) from f_to

o

exp [iku {t' ~-t)l. Substituting Eq. 9 and a similar expression for ion density
into Poisson's equation, Eq. 5, we obtain finally an integral equation for
E’ (t)’
K

t

E,_(t) +w; at' E, (') (t—t'){"fo [k (t_t:)] oik(p-9")
o

+BF_ [k (t - t'ﬂe'ikm(q’"q")/M}

= (4mei/k) [eik‘P?k (kt, 0) — o~ ikmp/M F, (kt,0)] (11)

where m; = 4mn ez/m is the electron plasma frequency.

In absence of the external electric field, ¢ = 0 and the integral
equation is of the convolution type.

A solution is readily obtained by means
of Laplace or one-sided Fourier transforms,

_ R
E ) = 7550 (12)
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where R(w) 1is the transform of the right-hand side of Eq. 11 and D (w) is
the transform of

2 [+ =
@y t[fo (k, t) + (m/M) F_ (k,t):’

The necessary and sufficient condition for stability of the oscillations is that
the denominator of Eq. 12 have no roots in the upper half w plane. This
.problem and the properties of D {w) bhave been carefully discussed by

Jackson™.

The integral equation is also simple if only electron fluctuations are
~ considered. In the limit m/M - 0 we have again 2 convolution equation,

. -ik . X -
is time for the quantity E e ' ¢. Since ¢ 1is real, the stability properties
re identical with those in absence of an external field.

; For the case where neither m/M nor E vanishes, Eq. 11 is rather
formidable. For any given initial conditions, the right-hand side of Eq. 11
known and one could at least obtain a nurmerical solution. To determine
e stability properties, however, it is necessary to decide whether Eq. 11
as gsolutions with unbounded E for any initial conditions. This in-
formation is readily obtained from the usual dispersion equation but we do
ot know a general technique for extracting it from the integral equation.
ome progress can be made by rewriting Eq. 11 in terms of a formal
operator representation, as follows. We solve Eq. 7 by formally inverting
the differential operator,

nefg . -1 dfo
fio0= l:at+1k(u-- EI Ek_&r . (13)
he density is then
n_e i 9 .
m = Jdufy = mikg[§5'5+¢]Ek (14)
here the function g is defined by
A o) -1 df0
gix) = [ o du (u—x—1ieg) il (15)

e singularity in the integrand for real x being defined in the manner
Ppropriate to an initial value problem. Substitution of Eq. 14 and the
nalogous expression for ion density into Poisson's equation gives the

perator form of Eq. i1

(.A)Z . . -
B (Bt &) @l a-gdn w

ackson, op.cit, p. 2.
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where G is defined as in Eq. 15 with the ion distribution, Fo’ in place
of £ .
o

If fo is Maxwellian,

fo (w) = -e1+72— (17)

™ a
then

glg) = a2z (&/a)

where Z (x)} is the "plasma dispersion function" which is always encountered
in an analysis of plasma oscillations linearized about a Maxwellian distri-
bution,

(s o)

2
Z(x) = 7 1/2 a0 (8—x~ig)te™®
-0
) ix 2 - -xz
= 2ie™® e? aq = ifre -2xY(x) ,
-Q0

Y {x} being real for real x,

Y(x) 2 e x el dgq . (18)

(For some useful properties of Y and Z, see Ja.cksonz.) Even in the low
temperature limit (a » 0) Eq. 16 is complicated, for the asymptotic form
of Z' is

2
Z'(x) > — 21 ﬁxe-x +x 2 for x » © , (19)

giving

2,2
g(&)» 72— 2i 7 (£/2%) 5/ (20)

Instead, we shall use the simpler function,

g(€) = (& +ia)”? (21)

2Ja.ckson, op.cit, p. 2.

118




e

which corresponds to the choice of a resonance shape distribution function

-1
£ (u) = a1a (uz + az) : (22)

: For the case where the two species have equal velocity spreads and
. equal masses (m = M, a = A), the equation for E,; is then

w? 1 {
E = -fzi + E (23)
k

i 9 2 i 9 . 2] "k
(ﬂ+¢+1a) (T(--é—t-¢+1a)

The ia term in the denominators, which represents Landau damping for
our particular f , can be eliminated by the substitution

1=

-

akt

E (t) = e T ylt) . (24)
Then Eq. 23 becomes
2
k -2 -2
w
p
_ i @ _ i d
ﬂ.—-lz-s—t-‘f'tp ﬁ—iﬂ—¢. (26)
tionalizing the denominators in Eq. 25 and setting
2
y = Bf"n (27)
e have findlly a fourth order equation for n,
2 2 2,2, 2,2
(a +{3)n=(k/wp)a(3 n (28)

We now specialize to the case of a constant external field. Since
ectrostatic instabilities tend to be more serious for the longer wavelengths,
e first study Eq. 28 in the limit of very small k. An explicit definition of
€ "small k" regime can be obtained by imagining that the external field is
Wwitched off at time t, leaving the two species with velocities
Y = teE t/m. The differential Eq. 28 can then be solved with an

. . iu .
Xponential, e K? where u is a root of

2
ya (u.2 + VZ) = (kz/w;) (u2 - VZ)
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The correction to the k = 0 solution, u2 = - VZ, is small provided
kV/mP< < 1. Thus, we consider k as "amall" if

k<< mwp/eEet . (29
If we define

s = kt and y = eEe/km

then the only explicit occurrence of k is in the factor k% on the right aide
of Eq. 28. In the limit of small k we then have

@ +pYn = 2(y*s® — 8%msi)q =0

whose general solution is
1/2 = -
n = st/ Zy 4 iys"/2) (30

where -2-1/4 denotes any Bessel function of order 1/4.

The character of the small k solution is now clear. For some choice
of initial conditions, the Bessel function in Eq. 30 will involve at least
some of the Hankel function of second kind, so that m(s) will grow
exponentially

2 :
n(s) 2 Y5 /2 (31)

for

ysz/2>> i

It follows from Eqs. 27 and 24 that y will have the same growth character
as m, while E, will grow only when the increasing exponential in Eq. 31

exceeds the Landau damping, i.e.

ysz/2>as ; (32

These results can most conveniently be summarized in terms of three
characteristic times:

T = mw /eE k ,
P e

the time for the field to produce particle velocities of wp/k;

tg, = \/'T/wp = \jm/eEek s
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the time at which the Hankel function beginsg its exponential growth

(corresponding to ysz = 1);

ty = Zma/eEe = 2(ka/gp)'r ;

the time at which Eq. 32 is satisfied and also the time required for the field
to produce & relative drift velocity of order a.

For given k, it follows from Eq. 29 that the solution of Eq. 30 is valid
only for t< T. Thus, there are three possibilities.

(@) If the values of a and E_, are such that

tg< ty< T

2 2
eE_/kma®< 1<(kD/2k) (33)

(where kD = w_/a is the Debye wave number), then the Hankel function
growth starts at a time {t ) when its rate is less than the Liandau damping.
Later on, (dt td) but stilfbefore t = T, the relative drift velocity exceeds

a ‘and Ek begins an exponential growth which continues at least until time

2 2
t;< tg( T, or 1< eE/mka“< (kD/k) (34)

then even though the relative drift velocity exceeds a at time td' growth
of E is postponed until the later time (t ) when the Hankel function attains

its asymptotic character. This result is at first surprising; in the case

E. = 0 a drift velocity greater than a leads to growth, so that one would

here expect growth at a time of order tq. However, the energy exchange
between particles and wave which constitutes the physical reason for growth
of the wave “cannot occur in a time less than that required for a particle to
traverse one wavelength, and this time is just t_,.* Hence we have the

double condition for growth in presence of an electric field: t must be
great enough for the external field to produce a relative drift velocity greater
than the thermal speed and also to accelerate the particles through a distance
of at least one wavelength.

(c) If

tg)T or t.>T

D

The time for a particle to go a distance 1/k in virtue of its thermal
velocity alone is greater than tg when the inequality Eq. 34 holds.
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that is, if

k>k. or e E/mkaz > (kD/k)2 (35)

D

then we can only conclude that no growth of E;, occurs before a time T.
Whether it occurs subsequently can only be determined by dropping the
restriction to small k or small t.

In the opposite limit of large k or large t, we expect that an
approximate solution should follow from setting the right-hand side of Eq. 28
equal to zero. Noting Eq. 27 we then have

a®y = 0 (36)

-
whose general solution is y = (c1 s + CZ) e 1YS /2 where ¢, and c, are

constants. Thus, y has no exponential growth and the Landau damping,

e 2%, prevails. The physical reason for the absence of growth is simply

that at times greater than T the electric field has accelerated all particles
to velocities greater than the phase velocity of plasma waves, wp/k, leaving
no particles to be trapped by the waves. We see that the genera?
characteristics are just those to be expected from consideration of the field
free case, the only new features being the requirement that growing waves
occur only if there is time to accelerate a particle through one wavelength,
and that after long times (t >> T} waves of a given k stop growing and
decay by Landau damping. It seems reasonable to expect a similar behavior
in the case m # M and also for other choices of f,;, but we have not

explicitly demonstrated this.

III. A Quasi-Linear Approximation

We now adopt a different point of view. Instead of assuming the
fluctuations to have an amplitude small enough to permit complete
linearization, we suppose that as a consequence of Buneman's mechanism
a kind of quasi-equilibrium is established in which f,; and F_ are nearly
time independent. This can comie about only if the amplitudes of the
fluctuations have increased to a point where the right-hand side of Eq. 3
approximately balances the term containing E,. In fact, we would require
f, and F0 to have such shapes as to lead to little growth of the fk, while
also demanding that the f) have a velocity dependence which enables the
nonlinear term in Eq. 3 to cancel the E., term. It is far from clear
whether the equations have any self-consistent solution of this character.

As a first step in studying this, however, we have examined the consequences
of assuming that

(a) fo is independent of time.
(b) The ponlinear terms in Eq. 4 can be neglected,
(random phase approximation). At worst, this can be regarded as an

approximation to the problem discussed in the previous section, valid over
times short compared to that in which f  changes appreciably

t<<m f(dVVfo)/eEe

122




Thus, we study the linear system

Efk eEe afk n_e Bfo
ot +1kv£k— m dv _ m Ek av (37)
with a similar equation for Fk and with
Ek = 4re ‘[dv (Fk-fk) . {38)

We shall assume that E_ is independent of time. The general solution of
‘Eq. {37) (obtained, for example, by straightforward application of the
method of characteristics) is then

t af 2
= £ ' 9 n —ik(A\T7/24vT)
fk(v,t) = (no m) dt E-k (t {dv (v+rr,t')e

o]
: 2
4 o ik(vEHNE /2)'fk (v + \t, 0)\8 (39)

“where

T = t—t" , X = eEe/m

: The electron density is

t
n = [avf (v) = (no,rﬁn-) dt! Ek(t')ik-r%é(k-r,t')e
(o]

2
+1, (kt,0) oM /Z)S (40)

iknr2 /2

“

here the bar denotes the Fourier transform, defined as in Eq. 10. Upon
ubstituting this and an analogous expression for ion density into Poisson's
quation, Eq. 5, we obtain again an integral equation for E {t),

t
E, (t) + w; at' E,_(t') -r[’f'o (kT,t')

(o]

. 2
elk)ﬂ' /2

-ikmr®/ "-M} = X(t) (41)

+ f. (kt,t') e
o)
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where

L2
X(t) = (dre/ik) l:?k(kt,O) o~ ikM"m/2M

2
_T, (kt,0) N /z] )

depends on the initial conditions.

When fo is independent of time, the integral Eq. 41 is of convolution
type, and thé solution by Laplace transform is immediate. With

o)
E ) = | dtE (1) (43)

and a similar definition for X (w) we have

-1
E, @ = X {1 + w; [r (@) + R(wi’} (44)

where r and R are transforms of the kernels of Eq. 41,

(s a]

_ : 2
r) = | dtf(kt)telTHMT/2)
(o}
*® 2
= CiRA L] aeT, (o) (HBOHMT/2K) (45)
. _
with
u = wk .

R {w) is defined in an analogous fashion. In inverting Eq 43, |

@
Ek (t) = dow

-0

-iwt
. e_zi@ X(w) - (46)
1+ wp [R(w) + r(wu

the integral is to be carried out along a contour which passes above all of
the singularities of the integrand. Aside from poles of X{(w), which depend
upon the particular initial conditions chosen, the poles of the integrand will
occur at points where the denominator vanishes.

D) = 1+m12) r{w) + Rw)] = 0 . (47)
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Eq. 47, which is just the dispersion relation for this system, has roots
1 the upper half plane, then E; (t} will grow exponentially at large times,
_e., the oscillations will be unstable.

© To gain some familiarity with the dispersion Eq. 47, we investigate its
roperties for the particular case of Maxwellian distributionsfor f, and F,.

e choose a frame in which the drift velocities are 1+ V and we assume both
pecies to have the same temperature,

-(v—V)Z/af
£ ==

° ™2

-(v+V)Z/a§

e

F = a2 = (m/M)al . (48)
‘lTaZ

he Fourier transform of :fo is

. 2.2
_ , ~-lae“/4+ive
£, - fdv 0 v = e e ] , (49)

nd the function r required for the dispersion equation is

@
de?o {9) e

1 4 1 w-V
4 50
K 1“12(31 ”1) o)

i(u8+x8%/2K)

r {(w)

A0
gle

i

|
N
fo X
e
®

By = ’I—ZiX/Raf , u = w/k

ind Z is the "plasma dispersion function" defined in Eq. 18. (The
eduction of the integral in Eq. 50 to the Z function requires just some
ompletions of the square in the exponent.) The dispersion Eq. 47 is then

2,2 2|1 a-V), ¢ u+V
{ = (w°/k*a%) —zf(-—--—)+ z'(—> (51)
P 1[pf My 2y :g Ky 22
here
o = By



The dimensionless parameter \!2 \/k a.z' is just the ratio of the velocity |
increment produced by the field in a distance 1/k to the thermal velocity,
In the limit A = 0, Eq. 51 reduces, as it_should, to the dispersion relatioj -
given by Jackson?. For X\ # 0 but X/kaf(( 1 the properties are
qualitatively similar to the zero field case. However, for )»/kaf >>1, the
churacter is quite different. In particular, we find that growing waves occyy
for arbitrarily small values of the drift velocity V, and, in fact, even in :
the limit M/m -» o where the ions are very heavy and do not participate
in the oscillations!

Consider the latter case, i.e., an electron plasma with a background
of heavy positive ions to provide charge neutrality. We want to know
whether the dispersion equation, which now simplifies to

k2 az 1 u - :
o) - o 52},
“p s :

has any roots with Imu> 0. The use of a Nyquist diagram, as described by
Jackson?, enables us to answer this without the necessity of evaluating -
Eq. 52 for complex u. Unfortunately, even if u is real, the argument of
Z' is complex because of p, and the separation of Z into real and
imaginary parts is simple only when the argument is real, pure imaginary,
or proportional to {i. We therefore exploit the fact that in the large field
limit, )./kaz >> 1, p.z‘ is nearly pure imaginary. Introducing the velocity

v = m = HeEe/ka (53)

-

{we shall assume that both k and Ee are positive} we have

= \/— 4iy%/a% + 1

zv/aJ——i(1+ia2/8Y2+-~-) - (54)

T
|

If we neglect the a.z'/y2 term, then

2
1 1 _ ’Tl' . 2(2 2 _
—;zZ (u‘ap ) = _.:-:-Y.Z x ’Z[Slnx (.l—}:l_{s[x :I 1)

ZJackson, op. cit, p. 2.
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here C and & are the Fresnel integrals

x
L2
C(x%) +1S(x?) = % et at x>0 (56)
o]

or small or intermediate values of x = (uéy), the representation Eq. 55

s a good approximation for large v/a. However, in the asymptotic region
%< < - 1) it is not correct; the real part of uZ causes a damping of the
inearly divergent, oscillatory character predicted by Eq. 15. To show this,
é use the large argument asymptotic form of Z,

2
Z'(x) = [—41 ﬁxevx]+.iz.+g;‘-41+5‘-23.61+.'
X

here the term in brackets is to be included if and only if Imx < 0.
Including the az/y2 correction to M in Eq. 54 we then find

2 2 2 : 2

1 u a u — a” u -i{u/2y)

—_— 7 (__) T em—— _n(_u) T1 exp,f—— }e
2 am 2 YZ Y ‘) YZ 16 YZ

+-2—§i[1+%(9;ﬁ)2+J . (57)

u

¢ see that if -u/y is large compared to 1 but still small compared to

//a, then the first term of Eq. 57 dominates. It is just the asymptotic

orm of Eq. 55. For -u/y large compared to y/a, however, the first

erm becomes exponentially small (due to the fact that p“ is not pure

maginary) and the second term (which is itself tending towards zero)

jominates. The first term in the curly bracket of Eq. 57 is proportional,
magnitude, to ’

2 2 2
sze-a x4y

«= Ev/a

he maximum amplitude being

2(y/a) \(2 /e .

We can now sketch the form of the real and imaginary parts of

B~ Z' (u/pa) as functions of u (Fig. 1) and hence the form of the Nyquist
t, i.e., the map of the real u axis in the plane of p.‘z Z' (u/pa) (Fig. 2).
We go from u = + @ towards u = - o along the real u axis
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REAL PART
—

1 TTS<IMAGINARY PART

Fig. 1

Real and imaginary parts of p'zz‘ (u/pa) as functions of x = u/2y

Fig. 2 Nyquist diagram for the di
in an external electric fiel

fipersion equation (52), correaponding to an electron gas
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o opposite direction from that indicated by the arrows in Fig. 2). The
ag;’zgo—lﬁt_starts from the origin, moves outward in a gradual]iy/ividening,
ockwise spiral until it reaches a radius of order (a/y) (27/e)'/“, then
,ckly spirals back into the origin. The dispersion Eq. 52 will have roots
the upper half plane (leazding to growing waves) if this spiral includes

jeast once} the point k az‘/w%. This will happen if
2 alk /k)z k., T w_ /a .
Y~ 23%p D 'p (58)

order for the large field approximation to be valid, we must simultaneously
ve y>> a. This, combined with Eq. 58, gives as a condition for

(k/kp)® nma’< < EZ<< nma? (p/i0? (59)

condition which can always be satisfied, for nonvanishing Ee, at a
ficiently large wavelength.

This is not a physically reasonable result, since it predicts that an
ectron plasma with a Maxwellian distribution will have some exponentially
owing waves no matter how small the applied electric field. When the

ns are assumed to have a finite mass, it is not surprising that the same
sease manifests itself and one finds growing waves for an arbitrarily small
lative drift velocity. The reason for this difficulty may be that the

iginal hypothesis is inconsistent; there is no solution for which the random
se approximation and the approximation of nearly constant f, are both
lid. At any rate, if a solution of the indicated character does exist, then

e present results show that f, and F, must have forms very different

om a Maxwellian distribution.

As a final point, we recall the remark, made at the beginning of this
ction, that the present analysis should describe the completely linear
oblem of Section II, at least during 2 time in which f; does not change
preciably. The results found here--instability for any external field--
Il agree with those of Section II only if we can show that the growth rate
small cornpared to e Ee/rna., the rate at which f, is changing. Sucha
monstration can, in fact, be given so that the results of the two gections
¢ not inconsistent.
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Conclusions

On the basis of the linear analysis of Section II, we conclude that at
least for the special distributions treated there, and probably for more
general ones as well, the presence of an external electric field causes no
significant changes in the stability character of the linearized plasma waves.
If the field is very strong, then it may produce a separation of electron and
ion mean velocities greater than the electron thermal speed (thus satisfying
the field-free condition for growing waves) before it has carried a particle
through one wavelength of the oscillations. In that case, growth is delayed:
until the particles have gone a distance of order 1/k and thus had chance -
to exchange energy with the plasma waves.

From the results of Section III it appears that if a solution of the
complete equations in which f, and F_, are nearly constant in time exists,
it must involve either an £ and F, with non-Maxwellian shapes or else
must be affected in an 1mportant way by the nonlinear terms in Eq. 4 Wthh ;
couple one mode to another.
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PAPER 19

INSTABILITIES DUE TO ANISOTROPIC
VELCCITY DISTRIBUTIONS '

E. G. Harris¥*
Oak Ridge National Laboratory

Abstract

If the velocity distributions of the electrons and ions of a
plasma are sufficiently anisotropic there exist both longitudinal
and transverse unstable waves. These instabilities have been in-
vestigated using the Vlasov equations. Most of the work has been
dore on the longitudinal waves and with the assumption that the
coupling between longitudinal and transverse modes could be neglected.
Since most of the proposed thermonuclear machines create plasmas
with anisotropic velocity distributions these instabilities may
haeve serious consequences.

Rather than write down all the equations involved in these derivations, I

hink it will be more useful ‘if I explain the equations on which they are based
nd then briefly discuss a number of instabilities which arise from anisotropic
istributions. These calculations are based on the following set of equations.
Boltzmann equation without collision terms for each species of particle in

he plasma

=0 (1)

ompd
o

2> .
24 V2A=%£Ze/7fd5v (2)

: lmz.. e/ fd3v (3)
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The summation in the above equations is over the various species of particle
(electrons and ions in the usual case). E and B are determined from A ang g
in the usual way. There is also the Lorentz gage condition §

— ;
Y.a+ -1-' %% =0 (u)

which is not independent but is a consequence of Egs. (1), (2), and (3).

The usual asswmptions of an infinite homogeneous plasma in a uniform
magnetic field is made. The equations are linearized and then Fourier analyze
in both space and time. Equation (1) becomes a differentiel equation in veloe:
space which can be solved. When f is substituted into Egs. (2) and (3) a set
of four homogeneous algebraic equations is obtained. The dispersion relatign:
is obtained.by setting the determinant of the coefficients of these equationg:
equal to zero. In the general case the elements of the determinant will be g
rather horrible mess of integrals over the zeroth order distribution function:
I will not try to write them down.

We are particularly interested in zeroth order distribution functions
vhich lead to instabilities of the plasma; that is, cause the dispersion
relation to have complex solutions for the frequency. We shall try to catalos
some of these. '

If the wave vector f is parallel to the magnetic field (which is teken to
be in the z direction)} then the terms which couple @ to Ax and Ay vanish and
the dispersion relation factors into three factors. Setting each factor equsa!
to zero gives e

3 .
1 = 2@2 fO d7v 5 (5 ::
L4 ( + kvz)
and
&+ kv l{2v2
% = k%% 4 ZC)2 f — +Za.) + s 3 oy (6
p O LRI (W4 kv, + c)c)

Equation (5) corresponds to longitudinal plasma oscillations along the lines (
B. In this case the magnetic field plays no part. Instabilities are predicte
by Eq. (5) whenever there is relative motion between electrons and ioms— O
when two streams of plasma pass through one amother. These instabilities ar
rather well known.

Equation (6) corresponds to transverse circularly polarized waves. Whe
the polarization is right-handed or left-handed determines the sign that pre
©,. Bernstein and Dawson® have discussed the instabilities predicted by Ed.
when a stream of sharged particles pass through a cold plasma.

1. O. Buneman, Phys. Rev. lLetters, 1, 8 (1958).
2. I. Bernstein and J. Dawson, Papers Presented at the Controlled Thermo-
nuclear Conference, Washingtom, D. C., 1958, TID-7558, 360 (1958). .
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An interesting instability has been predicted by Weibel.” Consider a
gtribution of the form

2, 2 2, 2
-V, /o -v_/a
OM e .L/ A 7z 4 (.—()

ibel has found that when a gz is sufficiently smaller than o, Eq. {6) predicts
stebilities. These instabilities occur even in the absence of an external
gnetic field and probably should be called unstable light waves.

Another interesting instability has been found by Rosenbluth,u It involves
gt I think is properly called a resonance between the frequency of a hydro-
gnetic wave and the cyclotron frequency. In order to see how it comes about
us consider Eq. (7) with o, = 0 and plot a portion of the dispersion

ation given by Eg. {7). It has the appearance shown in Fig. 1.

w

]

Fig. 1

r the origin the &) vs. k curve has a slope equal to the Alfven velocity.

@, were zero the curve would approach &,;, the ion cyclotron freguency
ymptotically, but for finite o, it behaves as shown. For small k there will
two real frequencies but as k increases the two frequencies will approach one
ther until they become equal and for larger values of k the roots become
plex. Apparently as the frequency of the wave approaches the cyclotron
quency it becomes possible for the ions to feed their kinetic energy into the
, The wave we have been discussing is the one whose electric vector
gtes in the same direction that the ion rotates. The wave with the opposite
cular polarization shows a similar behavior in the neighborhood of the electron

lotron frequency.

ffFiﬁallyAye get to the wqgk I have done on the problem.5’6 If we no longer
ume that k is parallel to B but allow it to have a perpendicular component,
1 we find theat the dispersion relation can no longer be factored. The

E. 8. Weibel, Phys. Rev. Letters 2, 83 (1959).

M. Rosenbluth, 'Recent Theoretical Developments in Plasma Stability, "

paper presented Nov. 1958 at the San Diego meeting of the Fluid Dynamics
ivision of the American Physical Society.

E. G. Harris, Phys. Rev. letters 2, 3L (1959).

E. G. Harris, Unstable Plasma Oscillations in a Magnetic Field, ORNL-2728

1959).
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terms coupling the longitudinal and transverse waves are found to be of the orgs
of the ratio of the phase velocity of the wave to the velocity of light. T haya !
assumed this ratio to be sufficiently small that the coupling could bte neglected
The results which I shall quote are oply valid when this 1s a good approximae
tion. This approximation 1s equivalent to using only Poisson’s equation rathey
than the complete set of Mexwell's equations and has been made by & nuumber of
writers. In this approximation the dispersion relation becomes

k v
o o nJg(;*>
1-L 2 J [ > :

@
L _o
k n=-m woov Q+kv +n@d )
Z Z (o4
;2 kv,
afo 8\ &, .
+k, =2 ®)

z (@+k Vv +nd)
zZ Z (o4

vhere Jy is a Bessel function of order n.

Suppose we have distribution functions of the form of Eq. (7) with o, =0,
Then the integrals in Eq. (8) can be carried out and the dispersion relation
written in the form 1 = Y(&») vwhere Y(@ ) has the appearance shown in Fig. 2.

Y(Q) has singularities at multiples of the ion and electron cyclotron

frequencies. There will be complex roots unless the horizontal line labeled 1
intersects all the loops of Y(w) (that is, has two intersections between each =

Y (w)

ci ci ci ci

Fig. 2
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pair of multiples of 6.; in Fig. 2), The criterion for instability can be
written epproximately

AN A (9)

ror

N 7(;—?{) 322 (10)
hMe

For a magnetic field of about 10% gauss this gives N> 10( particles/cm,5y which
i{s an extremely low density. Of course, in making this calculation I assamed no
spread in velocities along the field. Any such spreading will tend to damp out
‘these oscillations.

Tt would be nice to quote some experimental verification of the_existénce
of these instabilities. There are some experiments by Alfven et al.! on
trochoidal electron beams which seem to show these instabilities. In these
experiments the ions play no part and the instability criterion becomes

o
6.)12)6 > (&:’; o 0T NF Be/hmncz. Indeed there does seem to be at least order of
‘magnitude agreement with this criterion, but the dimensions of the beam was
not measured, so no careful quantitative comparison is possible.

Chairman Northrop: Any discussion?
Dr. Post: On this last point you published a letter in Physical Review a

month or so ago in which I understood that you elaborated on the instabilities
gssociated with the last condition.

Dr. Harris: That is true. In that calculation I didn't take into account
the ions. So this is the condition.

Dr. Post: Do I understand you correctly then, you would interpret that
‘there are really two cones, one associated with the ions and then much farther
-out one associated with the electrons?

Dr. Harris: That is true. If you get way out here vwhere the electron
cyclotron frequencies appear then you get other instabilities occurring.

. Dr. Post: 1 mean they might even be separated experimentally if they were
observable Ly this criterion you propose.

Dr: Harris: Well, if you go to this one in density then, of course, you
re in the unstable region here. You would have to have something suppressing
these oscillations. ;

Dr. Post: That is a weak limit.

Dr. Harris: Yes, every machine would be terribly unstable.

Al fven, Lindberg, Malmfors, Wallmark, and Astrom, Kgl. Tek. Hogskol.
Handl. No. 22 (1948).
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Dr. Auer: I disagree with Harris. If you look at the sort of thing he
wrote down you will find that the velocity of light cancels out in a couple of
terms during the transverse and longitudinal and what appears is the ratio of
the phase velocity to, let's say, the thermal velocity supplementing the average
velocity. Furthermore, 1f you are going to mske some sort of coupling, then I
believe the only way you can try to make this deep coupling make sense is if
you assume that your frequencies are large compared, say, to the plasma
frequency or the cyclotron frequency, and one place where you certainly must
make a big coupling is right around the ion cyclotron frequency.

Dr. Harris: Perheps I didn't look closely enough for the cancellation
you spoke of.

Dr. Rosenbluth: Do you have a comment on Auer's question?

Dr. Harris: As I said, I didn't find 1t but perhaps I didn't look close
enough.

Dr. Bernstein: I disagree with Auer;, only to lock at the meximum equation
in the term Fe sub EDT.

Dr. Auer: What I meant is the Boltzmann--

Dr. Bernstein: 'This has nothing to do with the Boltzmaenn equation. It
has only to do with the Maxwell equation. Under what circumstances can you
write the terms?

_Dr. Auer: There is another point. The question is when can you disregard
the ¥ x B term?

Dr. Bernstein: I think that 1s entirely separate.
Dr. Auer: How 80?

Dr. Bernstein: Because the distinction between longitudinal and transverse
is contingent only on whether or not the velocity is zero.

Dr. Auer: Yes, but it so happens that the v x B term in the equation
brings in an additional ccupling and you find that you canngp, for instance; in
the region that Harris spoke of, make the decoupling. The v x B terms have not
been treated properly in the equation for the distribution.

Dr. Harris: They have been treated properly. The dispersion relation I
get down here is exact. The only question is whether I have done the right
thing in getting these terms, and I think the only thing to do is to multiply
out the determinant and see if there is the cancellation you speak of.

Dr. Rosenbluth: I have just one comment on this resonance instability
that you spoke of. It is interesting to notice that this instability occurs
for any anisotropic distribution, even if 1t is Just & little tiny bit anisotropic.
Of course, the rate becomes extremely small. Even if you have two 4ifferent
temperatures in the perpendicular direction, even if you make them arbitrarily
close together you still get the instability. It becomes exceedingly small but
nonetheless it does exist for any anisotropic conditions. Then I wanted to
ask you; is this condition which you wrote down necessary and sufficient?

Dr, Harris; This is a sufficient condition and actually the factor in
here is of this order of magnitude.

Dr. Rosenbluth: You assume both distributions of this form?
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Dr. Harris: That is true, yes.

Dr. Allis: Combining this condition with the condition that the frequency
‘is less than cyclotron frequency puts the problem in the upper righthand

. corner of my diegram. In one corner the wave surface is this way. There are
‘directions along here of zero velocity and those are the only directions that
‘E is parallel to k. The things are properly coupled here and the B is taken
into account. The velocity of the wave is going to zero and that is why they

‘mare parallel. So I think it is entirely consistent.

Chairman Northrop: Any more questions?
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PAPER 20
ﬁ

THE BREAKING OF FINITE AMPLITUDE PLASMA OSCILLATIONS

John Dawson
Project Matterhorn, Princeton University, Princeton, N. J.

Abstract

Large amplitude, plane, electrostatic oscillations of a
cold plasma were followed numerically. The amplitude was
taken to be just slightly larger than that at which the waves
begin to break., It was found that the order wave motion was
largely converted to individual particle motions during the
first few oscillations. About 50% of the wave energy was
lost intwo oscillations. A few particles were found to be
accelerated to very high energies (of the order of ten times
the average energy).

If one goes to a Lagrangian coordinate system, it turns out that there
are certain finite amplitude longitudinal electron oscillations of a cold
plasma which can be analyzed exactly., For amplitudes greater than a
certain critical amplitude, the exact analysis breaks down and the waves
exhibit a breaking phenomenon roughly analagous to that of ocean waves.
In this paper I want to describe some numerical calculations which I
have carried out on this breaking process.

Figure 1l illustrates how the analysis goes. Here we are considering
plane plasma oscillations. The plasma is taken to be infinite in extent.
The ions are assumed to constitute a uniform, fixed neutralizing back-
ground. Let the oscillations be in the x direction, and let all particles
in a given x plane execute identical motions. Suppose that the equilib-
rium position of a plane is x, and let its displacement be X(x5). In
moving the distance X(x,) the plane passes over an amount of positive
charge equal to

e ng X(xo)

per unit area. Here ng is the equilibrium number density of electrons.
Now, if the ordering of the electrons is maintained then all the electrons
which were on the right of the x;, plane remain on its right and all those
which were originally on its left remain on its left. In the equilibrium
position there is no net charge on either side of a plane so that now there
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Figure 1
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must be a positive charge
en X(xo)
per unit area on one side and a2 negative charge
- en X(xo)

on the other side of the plane considered. We assume that no charges
enter or leave the system at plus and minus infinity.

From Gauss! theorem the electric field felt by the plane is

4r e n, X(x0)

B o= 2 (1)

and its equation of motion is simply

2
-4m e No - 2
P x = -9fx (2)

X =

This is the equation of motion for a simple harmonic oscillator. Each
plane simply oscillates about its equilibrium position independent of what
the other electrons are doing provided the ordering of the electrons is
maintained.

The most general solution to this equation is given by

X(xo, t) = X'l (xo) sin wpt + X2 (xo) cos wpt {3)

An interesting special example is obtained by setting

i

Xz(xo)

X (x)

A sin K x_
{4)
0

We may find the electric field as a function of position by making use of
equation (1) and the fact that the x, plane is at the position

"
)}

X, + X(xo) (5)

Plots of E/Ep, as a function of x for t = 0, for various values of
A are given in figure 2. E;, is the maximum value of E.

For small amplitude waves you get simply a sine wave. As the
amplitude gets larger, the maximum and minimum move together. For
very large amplitude waves, you find double valued curves. This is, of
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course, impossible. The derivation has broken down and the ordering
of the electrons is not maintained. It appears that this crossing process
will create a chaotic situation which will rapidly destroy the wave.

In order to follow the crossing in detail I coded the problem for the
Matterhorn 650, The electrons were divided into a discreet number of
identical charge sheets. The ions were still taken to constitute a uniform
fixed background. The equilibrium situation for this model has the sheets
equally distributed in x, that is the sheets are equally spaced. For low
amplitude oscillations the sheets oscillate about their equilibrium position
with the plasma frequency. For large amplitudes the sheets cross each
other and you get the breaking of the oscillations. To find the electric
field felt by a sheet, one needs to compute the net charge on each side of
it, {(number of sheets plus background charge) and make use of Gauss!
theorem.

The calculations were carried out for an initial situation in which
the velocities of the sheets were a sinusoidal function of their equilibrium
positions and for which the amplitude was just slightly larger than that
required to give breaking. I should mention that Buneman sent us a pre-
print of a paper in which he gives the results of a very similar calculation.
He followed the breaking of the unstable oscillations produced by a stream
of fast electrons passing through a background of heavy, but movable ions.

The calculations were carried out for 10, 30, and 45 particles
per half wavelength. Because of the symmetry of the problem, one need
only follow the motion of a half wavelength. One must put rigid reflec-
ting walls at the ends since every time a particle leaves the half wave-
length region a particle enters with the negative velocity. Further, when
two sheets cross each other they may be thought of simply as interchan-
ging equilibrium positions. This fact was made use of in the calculations.

Figure 3 shows the electric field felt by 30 and 45 particles as
a function of their instantaneous equilibrium position after just about one
half oscillation. The dashed line is the curve for 30 particles and the
solid curve is that for 45. Up to particle 25, for the 45 particle case, the
curve is smooth and from there on it is ragged. This is due to the particles
reflected from the wall which is at position 46 or if one prefers from the
particles entering the region from the adjoining half wavelengths. The
reflected wave is rather ragged and agreement between 30 and 45 particles
is only rough. This indicates that the results might be changed somewhat
if one uses more sheets, Nevertheless, quantitative.results are probably
not too bad. *

Figure 4 shows the electric field for 45 particlés as a function of
instantaneous equilibrium position for a time of 17. 4 radians or about 2.75
oscillations. The dashed curve shows the electric field that would exist if
the wave had not broken. As can be seen, the amplitude of the wave has
come down by a considerable factor.

Figure 5 shows the velocity of the particles after 17.4 radians.
This curve is much more ragged than the one for the electric field and this
is due to the fact that the plasma tends to smooth out the density fluctua-
tions of particles, but has no tendency to smooth out the velocity fluctua-
tions. Most of the velocities are fairly low as they should be since this
is at a maximum of the electric field. However, a few particles have large
velocities and these contain a large portion of the initial wave energy.

% Further calculations with 90 sheets per half wavelength carried out
since this talk was presented bear this out.
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It is clear from Figures 3, 4, and 5 that the ordered wave motion
is being randomized. To get an idea of the extent of this, the displacement
and velocity were Fourier analyzed in terms of the equilibrium position,
Figure 6 shows the absolute amplitudes of the various Fourier modes,
The solid curve is the amplitude for the velocity analysis while the broken
curve is 10 times the amplitude for the displacement analysis. The hyper-
bolic curve is the maximum amplitude a mode could have without breaking
if the other modes were not excited. The first point on the displacement
analysis curve has been left off since it would be at 59, However, one
times the displacement analysis curve would be at 5,9 which is not so much
larger than the amnplitudes of the velocity analysis.

This figure shows that the high harmonics are roughly equally ex-
cited and that there is no tendency to feed energy into any particular mode,
The velocity amplitudes are roughly 10 times the displacement amplitudes
which again shows the tendency toward smooth density curves, but not for
smooth velocity curves. This figure also shows that the modes higher
than the seventh or eighth will break on every oscillation.

Figure 7 shows the ratio of the energy is the fundamental to its
initial value as a function of the time in plasma oscillation periods. The
solid curve is for the calculations described above. Initially, it is one.
At one plasma period it is about 98 percent; at 1.5 periods it is about 96
percent. It then starts down very fast, going down to about 65 percent
after 2 periods. It then raises slightly, then drops again and finally ends
up at about 40 percent after 3 periods.

During the first few periods the oscillation is picking up a little
random motion from the breaking at the ends. Once the wave has devel~
oped a little disorder, the damping seems to go very fast. This indicates
that a little random motion or temperature would greatly influence the
damping rate. I, therefore, started the wave out with a little random
motion. The random energy was about 10 percent of the wave energy,
The wave velocity was about 10 times faster than the root mean square
of the random velocities and was 3.5 times larger than the maximum ran-
dom velocity of any particles. Thus, there should have been no Landau
Damping in the usual sense. The dashed curve in Figure 7 gives the
ratio of energy in the first harmonic to its value at time zero. As can
be seen, it damps very fast and in about one plasma period, it is down
to only 11 percent of its initial energy. While 45 particles are not very
many, this calculation gives a clear indication that thermal motions have
a profound effect on the breaking process, greatly enhancing the speed
of dissipation.

Chairman Northrop: ''Any questions?”

Dr. Dreicer: 'Did you notice any periodic nature of the solutions after
breaking occurred?"

Dr. Dawson: 'No."

Dr. Rosenbluth: "If you had started with a two-stream instability which
had had a reasonable sort of temperature spread, you
would have a sort of very rapid dissipation before coming
to the catastrophic breaking."

Dr, Dawson: "Yes, I think that is probably true. At least these calcu-~
lations indicate that temperature has a big influence on the
damping speed and you should get damping before you get
to the breaking arnplitude. "
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Dr., Tuck: "I take it that you have not just turned the 650 on and let it
run just to see what happens."

Dr. Dawson: "No, this calculation is rather slow. With 45 particles, it
takes three hours to do one oscillation, so you have to let it
run a long time."

Dr., Tuck: "Kruskal will tell you that it will return to the starting condi-
tions."

Dr. Dawson: "I have made some estimates of that time and I ﬁni that it
will return to the starting conditions after about 10 5 years
with a plasma frequency of 101, 1t would take the machine

about 1660 years to get there which is quite a while.
Dr, Tuck: "In a real gas?"
Dr. Dawson: '"No, that was for 45 particles."
Dr. Tuck: "Will 10, 000 oscillations with 32 particles?"

Dr. Dawson: '"Well, 10, 000 oscillations is about 30, 000 hours of machine
time, "

Chairman Northrop: '"Were there not some calculations by Ulam several
years ago, at L.os Alamos on the time it takes to
thermalize? The results seem to be that it returned
faster than you would have expected, so maybe, it
would be shorter than 10 to the 30th years."

Dr, Dawson: ''The breaking seems to be more catastrophic than the
processes to be considered. "

Dr, Longmire: "That is right, there was nothing like breaking in the
Ulam problem. There was nothing like losing order;
thus you really have lost something. "

Dr, Rosenbluth: "Did you see whether the particles were going to any-
thing like a Gaussian distribution?"

Dr. Dawson: '""There were always a number of particles at very high
energies which sort of ride the wave; so, the distribution
would have a much larger tail than a Gaussian."

Dr. Rosenbluth: ''"They, in themselves, are unstable."

Dr. Dawson: '"Yes, they would give ﬁp their energy after a while. "

146




PAPER 21

EXCITATION OF INSTABILITTES BY RUN-AWAY ELECTRONS

H. Dreicer and R. Mjolsness
Los Alamos Scientific Laboratory

Abstract

This paper deals with a fully ionized gas situated in an externally applied
glectric field E, and investigates its stability to eleétrostatic disturbances.
fthe linearized Boltzmann equation is solved for the disperion relation between
mplex @ and real k. Central to this work is the specification of the equili-
srium electron velocity distribution. In the weak field regime (E<< Ec) this
distribution is obtained by solving the Boltzmann equation in the run-away
region of velocity space and joining the result to a solution obtained earlier
{H. Dreicer, "The Theory of Run-Away Electroms, " 10th Annual Gaseous Electronics
nference, 1957, Cambridge, Massachusetts) for the low velocity body region
ere collisions dominate. In the run-away region the distribution develops a
imum in the neighborhocod of a moving front, ahead of which there are very

w particles, and behind which the distribution decays exponentially. This
Second maximum gives rise to the instabilities we have found.

In the strong field limit (E >) E.) we have turned our attention to the
problem of instability which develops from a non-steady state velocity distribu-
tion. The problem is being handled numerically and will be reported if sufficient
sults are available at the time of the meeting.
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STABILITY OF HELICALLY INVARIANT FIELDS
ON THE PARTICLE PICTURE

Russell Kulsrud
Project Matterhorn, Princeton University, Princeton, N, J.

Abstract

The stability of a system with helically invariant
fields has been recalculated using the energy principle based
on particle motions developed by Kruskal and Oberman, and
also by Rosenbluth and Rostoker. It is found that in the case
of isotropic pressure there is no change from the results
previously calculated from the hydromagnetic fluid equations.
In the case of anisotropic pressure the results are roughly
the same unless p, is much greater than p, . In this limit
the "mirror-type' instability of Newcomb is found.

The stability of helically invariant fields, which are the proposed
stabilizing fields for the stellarator, have been calculated 1 on the hydro-
magnetic fluid picture using the energy principle of Bernstein, Frieman,
Kruskal, and Kulsrud?, Since this calculation was carried out, two other
energy principles have been developed using the particle description in
the limit of small particle-gyration radius by Kruskal and Oberman3, and
by Rosenbluth and Rostoker.4 It seemed advisable to carry out the helically
invariant field calculation again on this particle picture, to see if the crit-
ical conditions for stability differed from those obtained based on the hydro-
magnetic picture.

The stabilizing fields can be described basically as follows:
Imagine the stellarator stretched out into a cylinder and wires wrapped
helically about the cylindrical tube carrying currents in alternate directions.

l. J. Johnson, C. Oberman, R. Kulsrud, and E. Frieman, Phys. Fluids 1,
281, 1958.

2. I, Bernstein, E, Frieman, M. Kruskal, and R. Kulsrud, Proc. Roy.
Soc. 244, 17, 1958,

3. M. Kruskal and C. Oberman, Phys. Fluids 1, 275, 1958.

4. M. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23, 1959.
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1n addition to the main field, B,, parallel to the cylinder, a small field,
By, Will be produced which is proportional to sin(£6 - kz} where k

‘is the wave number of the field in the z-direction and the number of hel-
jfical wires is 2f . This field produces a rotational transform which depends
.on radius. It thus has a sheer and is expected to stabilize the interchange
“instabilities. The magnetic surfaces of these fields are given by

r=R[1+6cos (L8 - kz)] (1)

%{-’.fwhere 0 is swmall and characterizes the amplitude of the superimposed
‘helically invariant fields.

The calculation was made for a very small value of § and also a
“yery small pressure. The pressure is expressed in terms of the dimension-
‘less number f3, the ratio of the plasma pressure to the magnetic pressure.
.In the hydromagnetic calculation it was found that the system was unstable
i B exceeded & 2,

There were three reasons for repeating the calculation, One reason
was the particle picture was more appropriate. The gyration radius is
nite small compared to any distance characteristic of the equilibrium. A
gsecond reason was that in the original calculation an anomaly appeared at
just the radius where one would expect an interchange to occur; namely,

the radius at which the rotational transform had a rational value. If
slightly exceeded § ¢ (the critical value) the system was unstable but only
to interchanges that were localized to a very small region about this radius
the order of a gyration radius. FEither a finite gyration radius theory is
necessary to describe this situation, or it is an anomaly due to the hydro-
magnetic picture, which would disappear in the particle picture. The third
ason for repeating the calculation was to treat cases with anisotropic
pressure, The hydromagnetic picture assumed isotropic pressure.

For an isotropic pressure distribution the results from the particle
picture are identical with those from the hydromagnetic fluid picture. We
already knew on the particle picture the system must be more stable.

The anomaly still appears, so that the finite gyration radius is really
volved. Thus to do a completely correct stability analysis of these types
hydromagnetic systems, a finite-gyration-radius theory must be developed.

. The results for the case of anisotropic pressure depend on E the
tio of the average of p,, and p. to the magnetic pressure. This is a
ttle surprising because there is more energy connected with p, than with
i+ Also a new moment 6 appears defined as

4

3 v of
d — ——
.S’ M Vn n (2)

. o
= 3

he results were a slight modification of the results for the isotropic case.
| the case £= 3 the critical 8 is

B. = . > (3)



where I have assumed 0 is proportional to the average pressure and

entp,
) - (4)

In this case one finds that if p, is very large compared to p,,,
® and T are very large, and . is very small. This is the situation
where the particles have most of their motion perpendicular to the fields,
If a perturbation producing a slight weakening in the field is made, the
particles are trapped in that region by the "mirror-effect'" and tend to
enhance the instability. If p,, is large compared to p, (which is the
case if runaways are contributing to the pressure) T is very small and

Ec = 62 .

However, B is related to the average pressure rather than the
energy. If one computes the total plasma energy contained by the magneti¢
tield, the isotropic pressure case seems to be the case of maximum energy
containment.
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PAPER 23

A VARIATIONAL PRINCIPLE FOR EQUILIBRIA
FROM THE PARTICLE POINT OF VIEW

Russel Kulsrud
Project Matterhorn, Princeton University, Princeton, N. J.

Abstract

The equilibrium equations for a plasma from the
particle point of view are written down in the small m/e
limit according to Chew, Goldberger, and Low. These
are discussed in the case of a toroidal geometry with
magnetic surfaces. The Boltzman function f depends
only on the energy, the magnetic moment, and the mag-
netic surface. A variational principle equivalent to the
full system of self-consistent equations is derived under
this constraint in f. It is found to be necessary to in-
troduce one more constraint on the particles (besides the
constants of the motion for the particle, the magnetic
moment, and the magnetic surface). This is a general-
ization of the longitudinal invariant.

-To determine a hydromagnetic equilibrium properly, it is in
general, necessary to solve the Boltzman equation together with Max-
wellls equations in a self-consistent manner. However, it is often
permissable to neglect collisions entirely and to assume the particle-
gyration radius is very small. In this limit the equations of motion
for a plasma have been developed by Chew, Goldberger, and Low. 1
This self-consistent system can be shown to be equivalent to a vari-
ational principle in toroidal geometries. This variational principle
-would give a rough idea of what types of equilibrium solutions are
possible.

The self-consistent equations for an equilibria with no mass
motions are as follows: f the Boltzman distribution function depends
only on position r, on the parallel velocity q and on the magnitude
of the perpendicular velocity |vy| . Expressedin terms of r the
“magnetic moment v = V_LZ/ZB (where 3 is the magnitude of the mag-

G. F. Chew, M. L. Goldberger, and F. E, Low, Proc. Roy. Soc.,
236, 112 1956).
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netic field) and the energy v + qQ%/2 + e/m ¢ (where ¢ is the
electrostatic potential), f is given by

BV =0 1)

There are two such equations, one for the electron Boltzman function
and one for the ions. The remaining equations {Maxwell's equations)
may be written in the form:

n, = ng (2)
VB =0 (3)
(VxB)xB = 2 V-P (4)
VxE = 0 (5)
B.g = 2B -(V.P)m (6)
r 2&
m

where the surmnmations are over the two types of particles, n is the par-
ticle density, and P is the stress tensor. From equation one it follows
that the magnetic field must lie on magnetic surfaces which we will assume
form a set of nested toroids, and will label by y the flux they contain. ¢
Therefore, f is a constant on a magnetic surface and we have '

f = fle, v, ¥) (7)

It should be noted from equation (6) that E is a first order quantity but that
it enters in the Boltzman equation (1)--~through its electrostatic potential

P

In order to construct the variational principle, it is necessary to
define a quantity p analagous to the longitudinal invariant. For any field
B which has magnetic surfaces and for any v and . E we set

ds
| V|

= yﬁ(e-VB-I% $):-25_ (8)

b, ¥) = | Ba 2

where the integration is performed over the magnetic surface .

The equilibria are just those configurations which make the
energy W stationary subject to the following constraints:f = F(y, [, ¥)

2. M. D. Kruskal and R. M. Kulsrud, Phys. Fluids, 1, 265, (1958).
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where F is prescribed for the electrons and the ions. B has aset

of magnetic surfaces which are nested toroids whose rotational trans-
form is a prescribed function of the flux . E = V¢ where ¢ is any
function. F must be prescribed to make the total charge inside any
magnetic surface zero. The energy W is the sum of the magnetic energy
and the kinetic energy of the particles.

From the existence of this variational principle, it seems reason-
able to assume that one may find toroidal equilibria for any prescription
of the Boltzman functions of the type f = F (v, p, ¥ ) and of the rota-
tional transform as a function of . In some sense this prescription
would also characterize the possible types of equilibria.

The constraints employed in the variational principle are just
those which would be conserved if the magnetic surfaces changed extreme-
ly slowly in time. Thig is in accordance with the thought experiment of
Kruskal and Kulsrud. The analogue of the longitudinal invariant, g,
given by equation (8), is also expected to be conserved in time. Its inte-
grand is only defined at those points where q< 0 which is-taken as the
region of integration. If g” 0 everywhere (particles untrapped) or if
q < 0 somewhere (particles trapped) one can show y is an adiabatic invar-
iant, In the situation where (in changing B) one passes from the case of
a trapped to an untrapped particle, it seems likely that g is conserved.

2. M. D. Kruskal and R. M. Kulsrud, Phys Fluids, 1, 265, (1958).
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ON THE STABILITY OF A HOMOGENEOUS PLASMA
WITH NON-ISOTROPIC PRESSURE

R. LBst™

AEC Computing and Applled Mathematics Center
Institute of Mathematical Sciences
New York University

Abstract

The stability of a homogeneocus plasma in a homo-
gensous magnetic fleld with non-isotropic pressure is
investigated by applying the macroscopic plasma egqua-
tions, It is found that the plasma is unstable if
the pressure along the magnetic lines of force 1s too
large compared to the pressure perpendicular to the
magnetic field; it is also unstable if the perpendi-
culaer pressure is too large compared to the parallel
pressure.

In the following the propagation of waves 1in a homogeneous
rlasma with non-isotropic pressure is investigated. This pro=-
blem is alsc of interest for the stability of such a plasma,
The stability of a plasma with non-isotropic pressure has been
studied by Rosenbluthl by applying the particle picture and by
Chandrasekhar, Kaufmann and Watson2 for a pinch effect confi-
guration starting from the Boltzmann equation.

The macroscopic equations as given by Chew, Goldberger and
Low3 and by Schilfiterdt will be applied, neglecting the heat-flow
terms s '

p%= -aiv P+ 2 PxE (1)

1. M. Rosenbluth, unpublished.

2 S. Chandrasekhar, A.N. Kaufmann and K.M. Watson, Proc. Roy.
Soc, Lond., 4 21,5, 4435 (1958).

3. 0,F. Chew, M.L, Goldberger and F.E. Low, Proc. Roy. Soc.
Lond. & 236 112 (192674

4. K. Hain, R. List and A.Schifiter, Z.f.Naturf. 12a, 833 (1957).

*0n leave of absence from the Max Planck Institut flir Physik und
Astrophysik, Minchen.
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B2 = _aiv (p ¥) (2)

2t
%E‘ = -2p, div ¥ +-]-:;§ p, B(B grad) ¥ (3a)
%‘E" = =p, div Y - iﬁpug (?grad) ? (Bb)
2F - w1 @D )
TP - ol B (5)
div 8= 0 . (6)

Here Vv  is the macroscopic velocity, p the density, B the

magnetic field, :]’ the electric current density, p, and p, the
pressure components perpendicular and parallel to the magnetic
field respectively and P the pressure tensor with the elements

Pk given by
i} 1 .
Pyae = Pu (3ge= 3 BaBy) ¥ Pu T3 ByBy - (7)

Assuming a homogeneous plasma and a homogeneous magnetic
field and linearizing the above equations, one can, K finally
derive the following equation for the amplitude W of the
velocitys

W - 23 F) (o, -p.) -z F ¥)21 7, (8)
- ¥ L2p, (7 D)-p, BT)NER) + 757 D= 47(8 TUET))
+ E"[;—gp* BR)+ i’l("* -p, WE BIE )+ L EENE T = 0.

Here « 1is the frequency of the wave with the wave vector ¥.

From this equation one gets the propagation velocity V = ‘.‘E as
a function of direction for the different kinds of waves.,

a) Propagation parallel to the magnetic field.

In this case there exists longitudinal and transverse modes
which are not coupled. The propagation of the longitudinal mecde
is given by

2
ve o= 35 (9)
This is the propagation velocity of a sound wave with one degree

of freedom {y =3; y=ratio of specific heats)., The veloclity of
the transverse mode is given by
2

2 = PJ - pl! _E__ (lo)

1.
v +i
p L
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In this case the Alfvén-velocity is increased or decreased if
the pressure component parallel to the magnetic field is smallep
or larger, respectively, than the perpendicular component. If
the parallel component is too large, the propagation velocity
becomes imaginary. This is usually regarded as meaning that the
plasma will be unstable. The same condition for _instability hag
been derived in other ways by Rosenbluth), Parkers as well as by
Chandrasekhar, Kaufmann and Watson%

b) Propagation perpendicular to the magnetic field.

In this case only a longitudinal wave with the velocity

2
2 by 1 B
i SR S
v 2tz S (11)

can propagate. This corresponds to a gas with two degrees of
freedom (y =2}, For this direction the velocity is always
I"eal.

c) Propagation oblique to the magnetic field.

In this general case there exist three different mudes,
Qpe is a pure transverse mode (v is perpendicular to icg and .
¥ ) with the velocity

2
2 Py, =Dy 1 B~ 2
= ————
v [ 5 i 5 =] cos (12)

where " is the angle between the direction of propagation and
the magnetic field. The two other modes (v; is in the plane of

and K ) are neither pure transverse nor pure longitudinal,
v2 is given by a quadratic equations

2 B2
v+ (2L (c0sSa 2) - SR -y b g U TN
5 (cos p = oog ~iT o 3 p2
(%‘)2(l-coszﬂ)cos%h'32%55“(2-c032&)00520 (13)

-3(p" ) 2o0sd = O,

One can show that all roots of this equation are real; there-
fore overstability can_not occur. Purthermore, there exlsts at
least one root with V@ > 0. But 1if the pressure component per-
pendicular to the magnetlc fileld is too large compared to the
parallel prsssure, one root will be negative. Agaln this 1s
usually regarded as meaning that the plasma will be unstable.

In this case perturbations propagating nearly perpendicular to
the magnetic field cause the instabilities,

Introducing the dimensionless quantities

pn P,
BZ

a = uﬂ and B = L=

Se E.N. Parker, Phys, Rev., 109, 187 (1958).
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“the limits for stability are given by
2

ﬂ’i.f—ggysﬂsﬁ'fl (15)

The inequality on the right-hand side is the condltion that the
parallel component of the pressure not be too larges The left=
hand side gives the condltion that the perpendicular component of
- the pressure not be too large compared to the parallel component.
This condition is a weaker condition than the one derived by
Rosenbluth.

Dr. Blank and Dr. Grad pointed out later to me that for the
above condition of Iinstability the character of the differential
equations changes from hyperbollc to elliptic. In this case the
initial value problem is no longsr well posed, The interpreta=
tion as instabilities is not obvious and seems to be difficult,
This important question has to be 1nvestigated further, I would
‘1ike to thank Dr, Blank and Dr. Grad for several discussions
about this probleme.
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PRESSURE BALANCE AND STABILITY CRITERIA IN THE
MIRROR MACHINE™

R.F. Post
Lawrence Radiation. Laboratory, University of California
Livermore, California

ABSTRACT

For some special cases where the plasma energy density
is relatively small compared to the magnetic energy density,
solutions to the tensor magnetostatic pressure-balance equation
have been constructed for the mirror machine. These solutions
can be made approximately to conform to previously derived
diffusion equilibrium solutions. The solutions thus obtained
can be subjected to various existing stability criteria, in order
to derive critical relative plasma pressure values. These
critical B values are generally of order 0.25, and thus are
probably high enough to lie outside of the range of validity of
the low f solutions for which they were calculated.

Some time ago I worked out a simple special solution to the pressure
balance equations in the mirror machine just mostly to satisfy myself that
such things existed and are not a figment of the imagination. I did not carry
it beyond a simple special solution, since I found one that approximately
satisfied the diffusion boundary conditions. It is now of some interest to
revive this solution and compare it with the requirements of some recent
stability criteria,

The equation we are to solve for the magnetostatic pressure equili-
brium is

v-]p=%3'x']§

Pyo ©
P =10 P_L 0
0 ¢ P_L

(1)

*This paper may also be identified as Report UCRL-5524.
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Fig. 1. Unit Vector Diagram.

Choose a set of coordmates with the unit vector n along the magnetic lines
~sand the unit vector p perpendicular to the lines as shown in Fig.1l. We
~ write down the equations for pressure balance parallel to the magnetic
_lines and pressure balance perpendicular to the magnetic lines just by
. solving Eq.1. Of course, in the parallel direction this side is zero. For
/ pressure balance in n d1rect1on

lv.-®|_ = o0, T -_B_
" B
‘-sothat
: vB
v Py = _GJ'— @[—B—J (2)

n

For pressure balance ] to B:

v 1
lv-®|, =¢cJB

so that, inserting
£ —_ 4‘"’ -
VX B = = J

2 2
B B 1
Vp<Pl+B”E> [z; +G’i— PD}R‘;

where Rc is the local radius of curvature of field lines, + where concave
toward axis, and — convex toward axis.

There are obviously an infinite number of solutions which can be chosen
which satisfy the various requirements you wish to put on thern. In the low
B case one simply ignores the variation of B due to P|, and is concerned
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mostly with the solution of Eq.2. Also I will consider solutions for long
machines where curvature terms will not be large.

The coordinate system for the proposed solution is shown in Fig, 2
indicating the field intensity roughly as shown. Let u be the coordinate in .
along the field lines, running from minus 7 to plus w. Let By be the value :
of B at u = 0 and By, the mirror field, Since we are looking for a low
solution, I will specity the form of B, and choose a particular functional
form which roughly fits our experimental cases.

-a(cos u-1)

B(u) By e

ll

By (lv—ucos u) , a<x<l (3)

This form of field variation approximates actual fields of interest.

We have to make yet another specific choice, that for Pj , because
there are an infinite number of possible solutions, Let us choose one which
at least roughly satisfies the mirror loss diffusion equation. Certainly at
the peak of the mirrors not only must the pressure go to zero but the first
derivative of the pressure must go to zero also. 1have therefore chosen a
solution which satisfies roughly the slope requirements of the diffusion

]
v

Uy —e

0

Fig. 2. Coordinate System.

equations such as those calculated by Rosenbluth, Judd and McDonald. The
one chosen is given by Eq. 4

Take P = -1;—° {1 + cos u) (4)

From this assumption, of course, finding Pj becomes a completely
solvable problem. I shall make a change of variables to simplify.

Let w = (1l + cos u)
Then

Py —PZQ {w - % {1 - e'““’]} (6)




Note that the ratio of P|| to P| at any point is equal to

P“ 1 1__e'0.w
2 foape]

For large alpha this approaches 1, i.e., a scalar pressure. Note that it
really takes an enormous mirror ratio to get very close to 1 because the
expression is exponential in the mirror ratio (R = e“2),

Taking a particular case, for example q = 1, and plotting the solu-
tions, we find that P| , starting at u = — v starts with zero slope. P
starts with a higher order contact. P, Py, P"/Pl and B are shown in
Fig. 3 and evaluated in Table 1.

These solutions have the property that they fit the boundary conditions,
at least approximately, in a way that is consistent with the solution of the
diffusion equation, so that they may have some physical reality.

This solution may be compared with instability calculations for the
recent nonisotropic instabilities. Remember that we are dealing not only
with a low B case but also with a very long machine. Thus in some sense,
if the nonisotropic instabilities are local we need only have a region large
with respect to orhit diameters to satisfy the required physical conditions

Table 1. Tabulated Pressure Balance Solutions

u cos u (l+cos u)=w ecosu  ~fcos utl) {w=1) 2 Py
0° 1 2 0.37 0.136 1 1.136
30° 0.866 1.866 42 154 0.866  1.020
60° 0.5 1.5 .61 224 0.5 0.724
90° 0.0 1.0 1 . 368 0.0 .368
120° -0.5 0.5 1.65 .608 -0.5 .108
150° -0.866 0.134 2.39 .880 -0.866 .014
180° -1.0 0.0 2.72 1.00 -1.00 .000
u Py/P Py P Py + P
0o 0.57 0.568 1.0 1.57
30° .55 .510 .933 1.434
60° .48 .362 0.750 1.112
90° .37 .184 .500 .684
120° .22 .054 0.250 .304
150° .104 .007 0.065 .072
180° 0 000 0.000 0.000
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for them to exist. The condition isl

PJ_ BZ
Pl('pﬁ - l) < B stable , P—.L > Py (8)

This can be rewritten as

P -1 P
Bl — 1 8= (9)
Py B2/3Tr
Using the solution found earlier, this requires that
peavll—e "] (10)

[1-e ]

First consider this condition as evaluated at the center of the machine
(w.=2). This yields

ﬁ<{ﬁfi—1 log R—l} (11)

For a mirror ratio R = 2, this yields B < 0.38, For R =4, p < 0.84,
These are very unrestrictive conditions, and are probably too high to be
valid for the low g solutions from which they were derived.

Near the ends, P_L/P“ - o, and one might be concerned about the re-
striction implied by this. However, because of the variation of g with u,
this turns out to be of no concern, since in the limit w -0, we find

ao<ue2°{l+£z’- +} (12)

where [, is the value of g at the center of the machine.

Po < 5 log R (13)

For R =2, fy < 0.69, this is thus a less restrictive condition than (11).

We conclude that the type of velocity space instability here considered
should not be of concern in the mirror machine for f§ values of present in-
terest, as long as the fields and pressure variations in the vicinity of the
mirrors are reasonably well approximated by the functional forms here
considered.

Solutions to Axial Pressure Balance

Take B{u) = Byg{l — acos u) See Fig. 2.

. VB By asinu

vB a 8in u
B T = acos u)

a sin u for a<<l

n

1. S. Chandrasekhar, A. Kaufman, and K. Watson, Proc. Roy. Soc.
A245, 435 (1958).
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To solve:

vB
VP = (Pj- R)—g
In the limit a<<l
ap P,
5 - (Py—P}) asinu, take P = > (1 + cos u)
[By(m = o]
dPy P
- — P asinu = ——QT‘) sinu (1l + cos u)
Solution: Py e jsmudu = —S‘% sin u (1 + cos u)e-o‘jsmududu+c
i, e., P"eq(:osu = — 9%9-5.(5'1nu+sinucos u)eacosudu+C
Let cosu = X
P"ec'x = + -OL‘ZE-)Q-X(1+x)e°xdx+C
abo (e x _ Lo
= + T{ a + ’>0. 2]8 }‘I‘ C
L a
Now P|| =0 at u=z%x 1w, i,e., at x =-—

o
| "
+

N‘;U N‘SU
—
D e
ud
| +
_pl"‘ |
) al—
[v]
1
[ l
+ QNIr-
J |
a ]
'

e

——

+

O
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]
b
e
=}
A
A
b

Py = % {[x + 1] — %[1 —e-u(x+l)]} X = Cos u

In terms of u :

P, = % {[cos u+ 1] — % [1 - e-o,(cos u + 1)]}

dP -
H—ﬁ-ll on {- sin u—l_(—sin u)e a{cos u + 1)]}

= & sin u {e—u(cos u -+ 1)-— 1}

dP"
at u = O, +w, T =

Py 1 ] — & a(l +cos u)
Also P = 1_;, 1 + cos u |

w
l +cosu

w
P" . 1 I:l_e-o.w]
L il A

Py
Z-l% = {%‘K - } = {—%—(1+cosu)—....}

0 at u
Let w

1]
[\

at u=0

I

H

=
| N ——

aw << 1
Returning to original assumptions, if VB/B = gsinu, exactly,then
B = Bope 2°°®*"Y s the resulting form for B.
Bmax 2
The mirror ratio R = B = e“@
min

The solutions found before now apply exactly.
Py = Po [cosu+l]—l[l—e-u(cosu+l)]}
2 a ’
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Py

"
g
—
€
|
ol
[
|
®,
%
| |
—

%‘1(1+cosu) = =2 w

]

P

?_L- =({1— | — -1 as g+ o f{for w between 0 andz)

Py - QW
- > {1 —e }
apy

T 5 sin u {e_ alcos u + 1) _ 1}

Py- P_L

n

0
o

B e
—-V-BE-= asinu = qwl/Z(Z—w)l/2

EZQ wl/2 2 -—w)l/2 {e— oW _ 1} 2 _ —Pi%' {l - e-aw} awl/z 2 -—W)l/2

pso, b weowie ey
y w— o[1-e ™
e w2
= e
] —e W
-z(z—w)l/z( - %) 5 (dw
- g as w0
w/? W2 \du
B = Bo - COs u
P = l:)zl {1 + cos u) Py = %0{(1 + cos u) — -:—1 [l - e"a(1 + cos u)]}
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PAPER 26

SOME HYDROMAGNETIC EQUILIBRIA

John L. Johnson* and John M. Greene
Project Matterhorn, Princeton University, Princeton, N.J.

Abstract

Hydromagnetic equilibria have been obtained for a
variety of situations which differ little from that of a zero
pressure uniform axial magnetic field. The perturbations
considered are particle pressure, axial current, curvature
of the system, and multipolar fields. These equilibria dif-
fer from those which have been obtained previously in the
thermonuclear program in that the lowest order term in an
asymptotic expansion of the magnetic surface is not cylin-
drically symmetric but is a function of both r and 6 .

The problem is reduced to the solution of 2 second
order nonlinear partial differential equation. If itis as--
sumed that the lowest order terms in the expressions for
the material pressure and axial current distributions are
of the form a+b ¥ _ where a and b are constants and
¥ is the zeroth order magnetic surface, the equation is
linear and can be integrated directly.

, Our interest in this problem arose several years ago when the
‘question of how the stellarator can be made hydromagnetically stable was
being studied: In that study an asymptotic expansion was made in which
ithe differences between the equilibria and an infinitely long cylindrical
‘system with a uniform axial magnetic field are small. It was shown, !
in particular, that the system is stable for a system with a_multipolar
‘field which depends on 8 and z as sin(£6 - hz) if B< 6 where 3

is a measure of the material pressure and § the strength of the multi-
polar field.

Efforts are being made to extend that theory in several directions.
For example, the perturbations which limit the stability were found to be
localized. The assumption that the Larmor radius is small compared to

J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman,
Phys. Fluids 1, 281 (1958).

On loan from Westinghouse Electric Corp. Atomic Power Department.
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the distance over which the perturbation can change should be removed,
Also, only equilibria in which the lowest order term in an expansion of the
magnetic surfaces® was cylindrically symmetric were considered., In
this case the perturbations could be Fourier analyzed in 6 and the modes
separated. In more general equilibria which do not have this symmetry,
for example, toroidal systems, the modes are coupled. In this work we
carry through the first step of the stability problem for these systems; we
develop a way of determining the equilibria,

The conditions which must be satisfied for an equilibrium to exist

are
Ve=j XB, (1)
VXB= 4nj, (2)
V-B=0 . (3)

The magnetic surfaces must satisfy the condition
B-V¥=0. (4)

It immediately follows from Eqs, 1 and 4 that p is a function of ¥

alone. We prescribe a magnetic field which satisfies these equations and
then determine the magnetic surfaces which exist in this field. In order

to avoid the complications due to boundary conditions at infinity we assume
that a perfectly conducting wall is placed on one of these magnetic surfaces.

In order to treat toroidal systems we work in a coordinate system
where the element of arc is

ds2 = dr2 + r2d62+ {(L- KT cos e)?azz. (5)

We use the usual thin tube limit and consider Ka <<1 where a is the
average radius of the perfectly conducting wall. We separate our plasma
currents into two terms. The component of J perpendicular to B is the
dlamagnetlc current related to the presence of a material pressure and will
in lowest order be denoted by the parameter 8. We introduce the param-
eter ¥ = J- B/B+ B to denote the current along the magnetic lines of
force, It can easily be shown that

B VX = V(B-B)XB- Vp/(B-B)* . (6)

Finally multipolar fields1 due to currents in external helical conductors
are denoted by the parameter 0 . As in reference 1, we make the
parameters K, 3, X, and § small and, in order that the effect of the
parameters enters into the determination of the zhape of the magnetic
surfaces, we order them sothat K ~f~ Z~§“ ~ A“ where A is an
arbitrary expansion parameter,

2. L. Spitzer, Jr., Phys. Fluids 1, 253 (1958).
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We consider the magnetic field

B=B,+BtBgtBp+Bs ..., (1)
where

B = e B (aconstant),

-0 —Zz [0}

B =e B Krcosb,

— K Z O

BB' ezBB(ﬂ’o) ,

§z= VXEZA}:,

o
_B6 =VZ 2 (1/s k) Gé;isBoIE(xs) sin u,_,
§>0 £ ==

and

X = sKrzr,

s

uﬁs ﬂG-SKZ+¢25o

Here BB {¥,) is arbitrary, and the vector potential AZ must satisfy

V:VA, = 4vZB_ . (8}

This system is more general than the one considered in reference l
due to the presence of” B, and the possibility that two 65 .ps With
the same value of s but different £'s can exist. ’

When we carry out our expansion,Eq. 4 becomes

2

v w = 0. (m=0,1,2,...) (9)

The condition that ¥ be periodic over the length 2w/k is

2w/& m
S z -]—3n° V\]{m_n dz = 0., {m=0,1,2..) {10)
0 n=1
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A similar set of conditions can be obtained for X _ . In the zeroth order
Eq. 9 requires that ¥ , be a function of r and % alone. In the first
order ¥, is determined up to an arbitrary function of ¥, . In the
second order Eq. 10 limits ¥, so that, if u, = u, -u

ms’

B
2T o mr
¥, = 4 { z 2 Cﬁ;is Coims —z 1 (K} plxg)eos uy ~Agk,

(o]

L,m,s (1)
The other set of equations limits the lowest order term in X,

2rp ¥ ) - fm + x
_ B'Zo’ r 1 s
z - KB { 2 2 C’G;is fb;ms [Ii’l'm' + xsz IZ Im].
A £, m, s

cos u!m*l-ZKrcos e} +g(\I‘0) . (12)

_ The problem then is to solve Eqs. 8, 11, and 12 simultaneously.
In the particular case where pp and g are linear in ¥, we can carry
through the integration explicit? . '

We will illustrate how the magnetic surfaces are distorted for a
few special cases. Since we are quite familiar with multipolar fields,
we will first limit our selves to systems with K = Pg = Zyy= 0, and
with two such fields present.

InFig. 1 £=1, m=0, anda=&4. /& 5.,0=0.7. An m=0
field, of course, is just a bulge. The surfices até still basically
circular although the magnetic axis has been shifted away from the center
of the system. As @ is increased the position of this fixed point is moved
outward, so that it is infinitely far out when @ = 1. From then on the sur-

faces are open.

The case where £=2, m=0, ¢ = 0.65 is shown in Fig, 2. Out-
side the fixed points located at x = 3, the surfaces are ellipses and, for
large x nearly circular. If @ is less than 0.5, these fixed points are
at the origin and all the surfaces are ellipses. If ¢ is greater than 1.0,
the fixed points are at infinity and all the surfaces are open.

Figure 3 shows the surfacesif £=3, m=0, a@= 0.0l. The
ellipsoidal surfaces around the three fixed points exist no matter how small
¢ is. They go to infinity as @ goes tol so that no closed surfaces then
exist.

The situation when £= 3, m=2, ¢ = 0.1 is shown in Fig. 4. The
fixed point which is at x = 4 goes to infinity as @ goes to 1.0 and the one
at x = 2 goes to infinity as o goes tol.5. For @ < 1.0 and @ > 1.5 then
the surfaces are all closed. For @ in this range they are closed for small -
x and open for large x.
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A rather pretty case is obtained when £= 3, m=-2, ¢ = 0.5 as
shown in Fig, 5, Again open surfaces exist for large x if 1,0 < @< 1.5.

Finally, if only one multipolar field with £= 3 is present in a torus
in which material is present, the magnetic surfaces are as shown in Fig, 6.
The numbers were selected solely to illustrate how the surfaces are distorted.
We note in particular that the magnetic axis is displaced outward, away from
the center of the torus,

We have been able to identify ¥, with the magnetic flux through a
ribbon which has one side on the geometric axis of the system and the other
side embedded in the surface in a constant © plane. By also calculating
the flux through a constant z cross section of a ¥, surface we can get
the rotational transform,

We are indebted to other members of the Matterhorn theoretical
group, particularly to Martin Kruskal, for many helpful discussions.
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PAPER 27
e,

SOME AXIALLY SYMMETRIC PROBLEMS IN MAGNETO-HYDRODYNAMICS™

Martin Schechter
Institute of Mathematical Sciences
New York University

Abstract

We carry out the detalls for solving certain
boundary value problems for ¥p = J x B considered
by Grad and Rubin. We show how the given data
ellow a reduction to the Dirichlet problem for a
non-linear elliptic équation. The method of itera~
tions is used to solve the problem in small domains.

1. Introduction

In one of thelr Geneva papersl Grad and Rubin considered
certain boundary value problems for the system

vp=JxB (1.1)
¥Vx B = uJ (1.2)
V:eB=0 {(1.3)

in tubular volumes, (Here p is fluid pressure, J the current
dsnsity, and B the magnetic field.) For instance, in 2 volume

V pictured in Fig. 1, suppese that B, (the inward normal compon-
ent of B,) is given on the entire surface in such a way that

Bh >0 on Sy , By <0on Sy and Bh = 0 on S3. In addition, p
end J, are given on Sy. Grad and Rubin gave many arguments to
show %hat this and similar problems are well posed (i.s., that
one can solve for p, J, and B is V), It is the purpose of this

1, H. Grad and H, Rubin, Hydrodynamic equilibria and lorce-~
free flelds, Proc. of 2nd U, N. International Conference on
the Peaceful Uses of Atomic Energy, Sept. 1958, Vol. 31.

" The work presented in this paper is supported by the AEC
Computing and Applied Mathematics Center, Institute of Mathemati-
cel Sciences, New York University, under Contract AT(30-1)-1480
with the U, S. Atomiec Energy Commission.
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Fig. 1

Fig. 2
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paper to show how one can solve the problem In the case that

V and all given quantities are axilally symmetric (i.e., do not
depend on € if we introduce the coordinate system r, z, © as
shown in Fig. 2). In this case many simplifications can be

made and mathematically the problem can be reduced to two
dimensions (as observed iIn Ref. 1l). Indeed, most of our methods
are contained implicitly In Ref. 1, only they do not carry out
the details.

We should remark that there is no difference whether V has
a hole through it (as in Fig. 3) or not; the mathematical treat-
ment is 1dentical, V may even be a torus sbout the z axis.

Fig. 3

Also, it should be noted that p on J, may be prescribed on
So, instead of S9. Moreover, in place of J, Wwe may prescribe the
"twist" of the 8 1ines on each tubuler p surface.

The author would like to thank Professor H. Grad for his
encouragement.
2., Mathematical Formulation.

If we introduce the coordinates indicated in Fig. 2 and set*
u=Bp, v==-B,, w=DBg, Egs. 1.1 - 1.3 become

wp, + viu, + v ) + %,'(rw)r =0 (2.1)
wp, + ulu, + v ) +ww =0 (2.2)
u(we),, = v{wr), =0 (2.3)
(ur), = (ur) =0 (2.4)

*
When the subscripts r, z, @ appear on a capital letter, they
denote components of a vector; when they appear on a small
letter, they denote partial differentiation.
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Let G be the two dimensionel domain obtained from V by slicing

it with the plane @ = 0, We only consider the portion r > 0.

(If there is no hole through V, r = 0 is part of the boundary

of G.) Let Cy, Co, C% be the curves bounding G and corresponding
to 31, 82, 33, respectively, Call the remalning curve €y .

(Thus C), corfesponds to the inner surface if there is a ﬁole
through or is the line r = 0 if there is no hole through V.)

Let 0 < 8 < 8 and 0 € o< 0, denote arc lengths along the curves
C, and Cp respectlvely, oriented in such a way that s = 0 at the

C

Fig. L4

Intersectlon P of €y and C) and o = 0 at the intersection Q of
C, and Ch(Fig. ).

The given boundary conditions are

B, = a{s) > 0 on Cy (2.5)
=-b(d‘) < 0 on 02 (206)
= 0 on C3 and Ch {(2.7)

p = c(s) on C1 (or p = cl(c) on 02) (2.8)

I, = e(s) on C, (or I, = el(c? on 02) (2,9)

By = Y4 at P (or By =£, at Q) (2.10)

where a(s), b(c), ... are given smooth functions. By the diver-
gence theorem we must assume

o

5o ) ,
.j a(s) r{s) ds =.j b(6) r(o) do=v , (2.11)
o )
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where r(s) and r(c) are the values of r at the points of Cy ang
02 corresponding to the values of s and o , respectively.

As shown in Ref. 1, we can reduce the system 2.1-2.l still
further. By 2.l, there is a function ¥ (called a stream functiop
for reasons which will become apparent) such that

y,=uwr , ¥y, =vr , ¥(P) =0 (2.12)

Setting @ = rw, we see from 2.3 that q is a function of w.%
Next, dividing 2.1 by v, 2.2 by u, and subtracting give

P, V

"
o

P, u

and hence p is also a function of Y. Since P, = P'(W)Wr .

U, ¥ Vp T % (¥,, + Vpp - % ¥p) = % Ly (2.13)

Hence 2.1 becomes
pvep (Wi +isa) 'y w=o
r

or 5 '
Ly + wr“ p (¥) + q(y) g (y) =0 (2.1Y)

Having reduced the system 2.1-2.}4 to a single equation 2.1l
for ¥, we now interpret the boundary conditions 2.5-2.7 in ternms
of Y. On C1

= + = +
ws wr rs *z zs vrrs urzs

rB » N = an = pr a(s)

where N = (z_ , -r_) is the inward drawn unit normal to Cj (and
hence to Sq). Henfe
s

v = J.r(s) ae(s)ds = A(s) on Cy (2.15)
o
Similarly,
v = Jo;(c) b(6)ds = B(o) - on C, (2.16)
)
Hence, the boundery conditions 2.5-2.7 can be written as
v = A(s) on C, (2.17)
= B(o) on C2 (2.18)
=y on 03 (2.19)
=0 on Ch . (2.20)

¥ Here we tacitly assumed that ¥ 2 + ¢ 2 = r2(B_2 + B_2) # 0.
Only such flows are of interest physfcally. r a
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At first glance, one might be led to believe that we have
reduced our problem to solving the nonlinear partial differential
equation 2.1lly subjeet to the boundary conditions 2.17-2.20.
However, it should be resllzed that we do not as yet kmow the
functions p(¥) and g(y) and until we can determine these functions
we cennot hope to solve 2,1L. We shall now show how the remaining
boundary conditions determine p(V¥) and q(y) in the interval
0O<v¥<v (cf. 2,11).

we can solve A(s) =

Since A'(s) = a(s) £#01In0 < 8 <

for s in the interval 0 < & < v i s = S{al.  Thus
s'(a) = = é 7T + Now on €1

p = c(s) = c(s(a)) 0 <A<V
Hence, by 2.15

p(¥) = c(s(y)) OsVvsv (2.21a)
Similerly,

dg _ -

3% =q,r +q, z, = ((rw)rrS + rwzzs)

= - prJn N

Thus 8

qQ = -p‘j r(s) e(s) ds + £r(0) = E(s)

o

on Cl‘ Hence |

a(v) = E(s(y)) O<Vvy<sv. (2.21b)

It is convenient for purposes of solving 2.1l to extend the
definitions of p(y) and q(V¥) outside the interval 0 < ¥ < v to
all values of ¥, This may be done in many ways. In particuler,
we may demand the following. Set

Hr,¥) = pr® ' (¥) + alv) a'(¥) (2.22)
A= max I H(r’\l')l
rysrsr, (2.23)
o<Y<V
oH
M= max (r,¥)
rysrsr, 3v (2.24)
osVysy

where we assume that G is contained in the strip rq < P < Ps ,

Let € > 0 be any fixed quantity. We continue the definition of
p(¥) and q(¥) to the whole interval ~oco< ¢y < oo in such a way

that

max |[H(2,¥)| = A < €
ry<r<rp (2.25)

=00 <Y<0o
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max oH
r1sr<r, oV (r,¥) ] - M<e (2.26)

=0 <Y<00
3. Solving the Problem.

In thils section we shall employ the method of lterations to
solve 2.1l with the boundary conditions 2.17-2.20. (This is
called a Dirichlet problem for 2.1hk.) The difficulty in solving
it stems from the non-linearity of the term H(r,V¥) (cf. 2.22),

The advantage of our method 18 that i1t lends itself to calculation
quite readily. At the end of thls section we shall compere our
results with those obtained using a powerful fixed point theorem
of Berkhoff-Kelloggd and Schauder.3 The drawback of the latter
method is that it gives no hint as to how solutions may be calcu-
lated.

Let ¥, be any smooth function in G satisfying the boundary
conditions 2,17-2.20, The method of iterations demands that we
be able to solve the llnesar eguations

Ly = - H(r,wo)

with the boundary data 2.17-2.&9. If G is bounded away from

r = 0, the result is classical®, The case when G touches the

z axis 1s treated in Appendix I of thgs paper and is taken from
a more general result of the author’s.

We next form a sequence wo, VY1, VY25 +.. Where Wn is recur-
sively defined as the solution of

Ly, = = Hlr,¥, 4)
satisfying the boundary conditions 2.17-2.20. Employing the
norm
NIl = max | Tlr,z) |,
(r,z)eG

we note that
L D = V) s 0+ ) F vy = v, 4 |
(ef. 2.26). Now assume that G 1s contained in the rectangle

TPy ST STy 5 2y <2< 2po A simple application of the
maximum principle shows that

(M+e 2
W¥pey = 4 I s 2w 2 iy -y

2, G. D. Birkhoff and 0. D. Kellogg, Trans. Amer. Math. Soc.,
Vol. 23, 1922, pp. 96 - 115,

. {3.1)

3. J. Schauder, Studia Math., Vol 2, 1930, pp. 171-180.

e J. Schauder, Math. Zeit, Vol, 38, 1933-3L, pp. 257 - 282.

5. M. Schechter, On the Dirichlet problem for second order ellip-
tic equations with coefficients singular at the boundary,
Communications on Pure and Applied Mathematics, to appear.
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(The proof of 3.1 will be carried out in Appendix II.) Now

assums that
)
r, < B2, (3.2)

M+e 2

Then we can always find an ¢ > O such that@= Le Y2 ~ >°
This is a sufficient condition for the sequence V,, V¥ see
to converge unifeormly to & limit function (cf,. Append}x IEI
Moreover, it follows from the interior Schauder estimates (Ref. Iy
that the 1imit funetion ¢ has continuous second derivatives and
sgtisfies

Ly = = H(r,V¥) .

Since each of the functions ¥, satisfies 2,17-2.20, the limit
funetion ¥ does likewise, Thus ¥ is a solution to our problem,

A s8till easler argument shows thet the iteratlions converge
when 3.2 is replaced by

Z2 " %1 < W (3.3)
Since the quantlity M plays such en Important role in the

method of iterations, we shall express it In a form in which the

dependence of 1ts magnitude upon physical quantities is apparent:

2
d d 1l 4 > (&)
E;&?‘IBLEE)-'.QE(F;—E) (3.4)

n

max

M =
51

We would like to mention that Bers and Nirenberg6 were able
to solve very general equations of the type considered here by
making use of the fixed point theorem mentioned above., It follows
from their work that & solution of 2.1lj, 2.17-2.20 exists when

r; > O without the restrictions 3.2 or 3.3. Most likely thelr
result can be carried over to tho casc ry= 0 without much 4iffi-
culty.

i+ Physically significant solutilons.

In order to solve equation 2.1l we extended the definitions
of p(¥) and q(¥) outside the interval 0 < ¥ < v. However, it is
obvious that for a solution to have physical significance, it
must be contained in that interval., In thls section we shall
give some configurations for which the solution of 2.1k, 2.17-
2.20 satisfies 0 < ¥ < v. Proofs are given in Appendix 1IV.

As before, we assume that G is contained in the rectangle
0€rysrsTo, 2] S2 5 2Zp. Define H(r,¥) and A by 2.22 and
2,23, respectively.

Theorem hel, If H(r,0) 2z O and H(r,v)< O for all r in
Py <r < rp , then there is a solution ¥ of 2. 1L, 2.17-2.20
satisfying 0 < ¥ < v in G.

6. L, Bers and L. Nirenberg, On linear and non-linear elliptic
boundary value problems on the plane, Atti del Convegno
Internazionale sulle Equazionl alle derivate parziali,
Trieste, August 1954, pp 141 - 167.
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Next assume that G is the rectangle ry < r < rp ,
$ 2 < 2. IfCy) and Cp are the lines z = 23, 2 = 2y, respec~
tively, then 8 =0=r-r.

Theorem 4.2, If r; > O and there is an € > O such that

A+ € 2 T 2
T (2r logl;z + 1y

then there 1s a solution ¥ satlisfying o < ¥ § v.

-r2)< A(s),B(o)< v- LEE(Zr log —Z + r22 2

For the speclal case when 0 on Cq, we can do slightly
better. For then |H (r,¥)]| fl where A 1s some fixed
constant, We do not have to assume rqy > 0.

Theorem lLi.3. If there 1s an € > o such that

Aq tE 7\+E
—%—— (r -ry 2 < A(s), B(6) < v - —H—— (r2 - rlz)2

Finally, we mention the case when Cq end Cp are the lines
r=r ,r=r,, respectively. Then s = o=12 - 21 .

» then O<y<v,

Theorem lJ.4. If there is an € > 0 such that

X+s (z - 21)2 < A(s), B(6) < v = LEE (z - 22)2 ,

then 0§w§v.

Appendix I.

The linear problem when r, = 0.
We wish to solve the Dirichlet problem for the equation
Ly = ¥, + ¥y, = 3 ¥, = £lr,2) (1.1)

where f(r,z) does not depend on ¥. For f = 0, it was solved by
Brousse and Poncin and 1f one c¢an exhibit a particular solu-
tion of I,), their result glves the complete answer, Here we
take another approach.

Let I be any function which takeg on the desired boundary
values, Setting # = y- U , we get as an equation for ¢

Lf = £(r,2) =L = F(r,z) (I.2)

and § = 0 on G the boundary ¢f G, Hence if we can solve I.2
for any F(r,z) "with # =0 on G, we can solve I.l for any f(r,z)
and hav1ng the desired boundary values, Thus we need only
concentrate on the problem for fg.

7. Pos Brousse and H. Ponecln, Quelques resultas generaux
concernant la determination de solutions d' equations
elliptiques par les conditlons aux frontlers, Jubile
Sclentifique de M. D. Riabouchinsky, Pub., Scl. et Tech.
de Ministere de 1' Alr, Paris, 195L4.
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Lerma I.1. Suppose |F(r,z)| € A  and that # is a solution
of 1.2 whiech vanishes on G. Then

! r
A2 2 _
|#] < —=r° log <= = h(r) (I.3)

in G.

Proof, It 18 easily checked that Lh = -,l'. Hence
I(# -h) =F + 2! 2 0 1n G, while ¢g-h < 0 on G. Hence by the
maximum principle ©:? #§ < h in G. The same argument for the
function =(@ + h) gives the other half of the inequality I.3.

Returning to our,.problem, let G be the Intersection of G

with the halfplane r o« Sipce Gp does not touch r = 0, we can
solve I.2 in G, with =0 on G,. Call the solution g.. If n>nm,

we have, by Lemma I.1,

ll
i lﬁnl < ;m—z log mr,, (I.L4)
onr = 1 . Since L(¢n - ¢m) =0 in Gp, we have, by the maximum
principTe,
)\I
I8, - 2, < 55 log mr, (I.5)

in Gn. If £ gm, I.5 surely holds in Gg. Now fix .Z and let
m,n — ®. Then |f, - #, | —> O uniformly in Gp. Thus there
is a continuous function B in G4 to which the g, converge. It
follows from the interior Schauder estimates (Ref. lj) that & has
continuous second derivatives and that the derivatives of the ﬂn
converge to those of @. Thus # 1s a solution of I.2 in Gg .
Since £ was arbitrary,f is a solution in G, That @ = O on that
part of & not touching r = 0 follows from the fact that each

#, =0 there. That § = 0 on r = 0 follows from Lemma I.l.

Appendix II.

Proof of 3.1.

The proof of 3.1 follows almost immediately fPom Lemma I.1l.
Since
ILyq =¥ s M+ e) v, -v 4 1,

we have, by Lemma 3.1,

(M+e) || v _-v .1l r
n ‘n+l 2 2
lwn+l-¢nl < 5 " log -

8. E. Hopf, Preuss., Akad. Wiss. Sityungsber, Vol 19, 1927,
pp. 147 - 152.

9. Bateman, Partial Differential Equations, Cambridge 1932,
PPe 135 - 137. .
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r
Now the maximum of the function r2 log ;é occurs at r = e'l/2 r

and equals r, /2e. Hence 2

2
r
Wpe1 = ¥l < g o) vy = v |
from which 3.1 1s an lmmediate consequence,

Appendix III.

Proof of convergence of iterations.

If condition 3.2 1is satiasfied, then
¥y = ¥plls @ W, = v 4l (II.1)

where C) 1s some constant < 1. Since III.1 holds for all n,

Nwpy = ¥ells ®Mwy = v lls @ Nwgy - v olls ...

t
<®" v - v, Il -
Thus for n > m

v, -l <S> Ky - ¥ll<slly-v, 1S @

t=m t=m

m 1
<@ " Nvy -v, Il - yqp — O
as myn =~ 0, Thus ¥_. ¥,. V,, +s+ forms a Cauchy sequence and
there is a continuoul fuﬁctign ¥y to whilch they converge uni-
formly.

Appendix 1IV.

Proof of Theorem L.l - L. L.

Proof of Theorem h,l. Since H(r,0) > Q for all r in
ry s r < rp, we may make H(r,¥) > O for ¥ < O, Similarly we
may assume H(r,¥) < O for ¥ > v. Now suppose ¥ is a solution
of

L\V = = H(I’,\IJ)

satisfylng the boundary conditions 2,17-2.20., If ¥ < O anywhere
in G, it must have a negative minimum at some interior point. A%
such a point Ly = -H(r,¥) < 0, Hence by the maximum principle, V¥
must be ldentically a constant in the neighborhood of such a point.
Thus the set of minimum polnts is open. By continuity it is
closed. Hence Yy 1s 1dentically a constant, which 1s impossible.

Proof of Theorem L.2. Set
_ A+TE 2 r 2
g =y + T ( 2r° log oy +r,% -
Then L = - H - (A+€) < 0 in G, while ¥ > 0 on G. Hence & > O
inside, Similar reasoning proves the other half of the inequality.

2)

The proofs of Theorems 4.3 and L.l are similar to those of
Theorem L.2 and are omitted,
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PAPER 28

ASYMPTOTIC THEORY OF HAMILTONIAN AND OTHER SYSTEMS
WITH ALL SOLUTIONS NEARLY PERIODIC

M. Kruskal
Project Matterhorn, Princeton University, Princeton, N. J,

Abstract

Consider a system of N ordinary first-order differential
equations in N dependent variables, and let the independent vari-
able s not appear explicitly. Let the system depend on a small
parameter € and possess a formal infinite power series expansion
in €, and suppose that the limiting system for € = 0 exists and
has only periodic solutions (in general not all with the same period,
however) i. e., all the trajectories of points moving according to
the equations form simple, closed curves. It is shown that a for-
mal solution can be constructed involving infinite power series in
€ and satisfying the equations over large domains of s (of order
1/€ ). It is proved that the true solutions of the system exist over
such domains and are asymptotically represented as € — 0 by the
formal solutions. The construction is based on the standard type
of formal series solution {useful over bounded domains) of a ""re-
duced'" system of N -1 equations in N -1 dependent variables and
with the new independent variable ¢ = € s; the omitted variable
is essentially an angle variable § describing the phase around
the simple, closed curves. There are various interesting proper-
ties which, if possessed by the original system, are also possessed
by the reduced system,

If the original system is Hamiltonian, or is even trans-
formable into a Hamiltonian system by a formal infinite power
series transformation of variables, then one can define the usual
action integral J = ¢ X p dgq to all orders; the integral is taken
around the phase loop. It is proved that J is an integral (a '"con-
stant of the motion'}) of the system and that the Poisson bracket
of § with J is unity, both to all orders, The usefulness of this
particular integral is that it is computable locally. The reduced
system, after elimination of another dependent variable by means
of the constancy of J, can itself be put in Hamiltonian form; if
its solutions are nearly periodic, the whole procedure can be re-
applied.

The present theory encompasses previous proofs of adiabatic
invariance to all orders for particular systems such as the harmon-
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ic oscillator !, the nonlinear oscillator 2, the charged particle
spiraling with small gyration radius and period in a given elec-
tromagnetic field 3, and the longitudinal back-and-forth motion
of such a particle trapped between two '"magnetic mirrors'" in a
weak electric field 4. There are many other applications, not
only of the result on adiabatic invariance, but more generally of
the methods and results involved in obtaining the reduced system
by 'taking out' a relatively fast, nearly periodic variation.

1. R. M. Kulsrud, Phys. Rev., 106, 205, (1957).
2. A, Lenard, Ann, Phys., 6, 261, (1959).

3. M. Kruskal, "The Spiraling of a Charged Particle, " Rendiconti
del Terzo Congresso Internazionale sui Fenomeni D'lonizzazione
nei Gas tenuto a Venezia, p. 562, Societa Italiana di Fisica,
Milan, (1957). Same as M. Kruskal, The Gyration of a Charged
Particle, PM-S5-33, NYO-7903, (1958).

4, C. Gardner, in press; also presented-at this conference.
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PAPER 29

ADIABATIC INVARIANTS OF GHARGED-PARTICLE MOTION™

Clifford Gardner
Institute of Mathematical Sciences
New York Unlversity

Abstract

The problem of the motion of a charged partlcle of
small mass 1s considered from the standpolnt of perturba-
tion theory. By a canonical transformation expressed as
a power series In the mass, the Hamiltonian of the
system is transformed so that EKruskal's series for the
magnetic moment sppears as the momentum conjugate to an
ignorable coordinate. This furnishes a new proof of
Kruskel's theorem on the constancy of the magnetic
moment and also produces a Hamlltonian for the gulding-
center motion, with two degrees of freedom. If now the
particle 1s trapped between two magnetic mirrors in =a
field which varles slowly with time, a repetition of the
perturbation treatment using the guiding-center Hamiltonlan
gives a power serles which 1s a generalized second or
longitudinal adiabatlec invariant. The serles 1s constant
to all orders In the mass, Also, the dynamical system is
reduced to one having one degree of freedom.

1. Introductilon

Our subject is the motion of s charged particle of small mass

in an electromagnetic field and the assocliated adiabatic invariants,
The results are well known, but our method of treating the problem
should be of interest, The method 1ls a generalization of a simple
and 1l1lunminating discussion of the adlabatic invariant of the
harmonic oscillator which has been presented by Chandrasekhar.

The method is an adaptation of the classical methods of perturba-
tion theory of a Hamiltonian system. The method provides a

*The work presented 1in this paper is supported by the AEC
Computing and Applied Mathematics Center, Institute of
Mathematical Sciences, New York University, under Contract
AT(30-1)=1L480 with the U. S. Atomic Energy Commission.

1. S. Chandrasekhapr, in "The Plasma in a Magnetic Field", edited

by R. Landshoff, Stanford University Press, 1958.
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discussion of the validity of the adlabatic invarients which, it
is felt, has advantages of clarity and simplicity. Also the
method provides the basis of a discussion of the second or
longitudinal adlabatic invariant which 1s more rigorous than
discussions presented heretofore.

2. A Speciael Hamiltonian Formulatlon of the Edquations of Motion

We consider a particle of mass &€ and unlt charge in an
electromagnetic field, If E, 1s the component of E parallel to
We assume '

E, = 0(e) (1)

Also we assume that, the field strength B is bounded:-away from
zero, and that E B and their derivatives are continuous and
bounded. We suppose that the initiel position and velocity of
the particle are given independently of e.

It 1is well ¥nown that for small € the motion 1s compounded
of three simpler motions as follows:
{a) the particle gyrates rapidly about a gulding center
{(b) the guiding center moves at moderate speed along a
magnetlie line
(c) the guiding center drifts slowly from one magnetic
line to another.

We now show how coordinates and momenta may be deflned in such a
way that each of the motions (a), (b), (c) 1s clearly associated
with a particular degree of freedom,

It can be shown2 that

Te+B=0

implies that parameters a,B (depending on the rectangular coordi-
nates X, end the time t) can be found so that

B=VaxUp (2)
Clearly a, P are constant on & magnetic line, and so a magnetic

line 1s specified by giving a, P deflnite values, It follows that
with the sappropriate gauge we have

R=a VB (3)

Let s measure arc length along a line of force. Then s,a,f may
be used as geometric coordinates in place of Xy We note that

-2 (g +a) =k, =oe) (L)
by the assumption Egq., 1.

2. H, Grad and H. Rubin, "Hydromagnetic Equilibria and Force-
Free Fields" (Appendix I), Inst. of Math. Sci., New York Un.,
NY0-2358, Jan. 1959.
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Now the usual Hamiltonlan formulatlon of the equations of
motion is given by

_ 3
=2i 1Z= (Pi-Ai)2+¢ (5)
o [l = rpax -Fasl =0 fIF.aX-Fatl=o (6)

The generallzed coordinates here are the rectangular coordinates
Xy and the momenta P1 are given by

. Y
v

-
P, =€ x, +4A, , or P = eV +A (7)

where ¥ denotes the veloclity vector, whose components are ii.
The formuletion of the equations of motion whieh we need is
obtalned by defining Q45 Py» H by the following relations:

- - D

ToRoA_ 2o Fa)p, + Galp, - GBla (8)
8 = q2
- (9)

B=aqy+ep,

2
H =.% (B +a g-?.;) 5 {IVI + 2(3—)p2 + 2(8 st)p; - Z(SE)QIJ (10)
A straightforwerd calculatlion shows that

+

. af - Hat = py day+ epyda, + e®p,da, - eHdt + d(epypy) (1)
Hence, it follows from Eg. 6 that

1
6 J S py dag + p, da, + ep) dgy - HAL] = 0 (12)

We now have what we may call a quasl-Hamiltonlan system. Here H
is given as a function of qi, py, t by Eqs. 8 and 10, where the
coefficients are understood to %e evaluated in terms of the q4, pj
with the aid of the relations (Eq. 9). The equations of motion
which are derived from Eq. 12 are as follows:

. _103H . _ _103H b
9 = e 35; s P13 T % BEI
= od . _ _ 0H
% = 35, » P27 " 5q; s (13)
. _ . JH - dH
37 F%; 0 P37 7 F3q;

183



We see from Eqs, 8, 9 that 41, pp ere essentlally veloclity com=-
ponents of the gyration, and g5, pp describe the motion along
the line, and q,, P3 deslignsate the line of force on which the
guiding center %s located, In thls sense, then, each of the
motions (a), (b), (¢) 1s associated with a particular degree of
freedom.

Note that Eqs., 8 and 9 show that each of the q's and p's
1s 0(1)s 1If we expand Eq. 10 In powers of e, using Eq. 9, we
obtain

P 2
=1 o) 1 2 (ExB) 2 2_E
B=3 (¢+°'8%)+ 5 {Ivl + 2[3— S .Vs]p2+p2 - Ez-g + 0(e)
where now the coefficients are to be evaluated at
5=q29 a=P3’ B=Q3
and where we have used
E, = 0(E).
-
Here v, 1s defined by
- s B 2B EBxB
vV, =V = (E.. v) g - ——i%;—
- S _a.  (Fxis 3 BxB
- X
v, = Vh[pl- (p2 Bt —-Ez—) )
— - - -
-—h
- Y8lq,- 2EYE), (p2§+—2—§23) ]

Note that Egqs. I end 1ll} show that H has the form

= 2

—~

where Ho'Hl’ etc. depend on all the q's and p's and on t,

3. The Magnetlc Moment

It is well known that the magnetic moment YE/B is an
gdiabatic é nvarlant, meaning that as € tends to zerg, the
quantity v /B tends to a constant, In fact Kruskal’ has shown
how to construct a series (not necessarily convergent)

2
b= pg * Byt ETUy t e

where y, are functions of the position and velocity of the
particlg, whose form does not depend on the initlal conditions,
and where

2
By = v, /B

3. M. Kruskel, The Gyration of a Charged Particle, U.S.A.E.C.
Report no. PM-S-33, NY0-7903, March 12, 1953.
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and such that
N
d k _ N-1
-d_.'E E=O 3 uk = 0(6 ) (19)

We shall now show how this result may be derived by performing

a canonical transformation on Eq.1l8 so that we obtain a Hamiltonian
with a coordinate,which 1s ignorable to opdgr eN"1l,  Then the
conjugate momentum 1s constant to order ¢ , and we obtain Eq. 19.

The method consists in repeated application of a transfor-
mation which amounts to introduction of the action and angle
varlables corresponding to gy, Py, though we prefer to work with
rectangular coordinates rather t%an with the ection and angle
variables, which are of the nature of polar coordinates.

We observe that if we consider H, as funectlon of qj, P
holding all the other varlables fixed, then the lines H_= constant
in the q; p; plane are mested closed curves topological?y like e
family of concentric circles. (In fact, Egs. 1L and 17 show
that these curves are similar concentric ellipses.) We shall
try to find a ceanonical transformation (?riserv%nﬁ the form
Eq. 13 of the equation? gf.mofi3n) to q \N/, p (N}, H(N), s0
that as function of q, N s P N he curves H¥N) = constant are
indeed concentric circles, and HtN has the form

H(N) N)2

. N2 ¥ _N N N

= function of (q, )7+ {py )75 a5 5P 5 a3 ,P3 5 t

We cannot do this exactly, but we can to 1t except for an error
of order €¥; and then we obtain, using Eq. 13,

N)2 N)Zl = O(GN-l)

5 [(a,)° + (py

The first step i1s to find an area-preserving mapplng of the
Q1-Pq Pplane into a qy'~py' plane such that the lines H, = constant
in t%e Q1-py Plane get mapped into concentric circles, with center
at the origin, In the qy'-py' plane. Of course the mapping
depends on the other variables qp,P25934P ,t as parameters, Let
r, 8 be the polar coordinates in the ql' l' plane of the lmage
of the point dys Pqe Then

'’ = § Py day

qudo-/lvrll (20)

° = §ao/ vl

where we integrate along the line H. = constant which passes
through q,, py. Here & is arc lengfh on this line and |[VH| 1s
the gradient }with respect to qq, py) of H. Of course nrd and
©/2n are the usual action and ahgle variables.

The fact that the mapping preserves area Implies that
$py day =$pyraar = - §arap, (21)
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so that the line 1ntegral

ﬁpl'dql +q;'dp; ']

is independent of the path of integration in the q3' py' plane,
and therefore deflnes a function G, It is convenient %o repre-

sent G as a function of q; and pl', 80 that G 1s a generating
function * of the transformation :

p; =96/3a, , a ' = 36/, (22)

Of course, G is a function not only of q,, P! but also of the
parame ters 9ps Pp5 93 p3; t.

Now we define a canonical transformation of the system Egq.
18 with the ald of the generating function

F= % q3p3' + q2p2l + eG(ql,pII; q2’p2‘; q3’p3'; t) (23)

a8 follows:

Py "%%%1 ' =g aglr
p2 = 35 %' = 3o (2)
p3=e§-§—3 q3'=e%%5—.
H' = H + %% (25)

This transformation preserves the form Eq., 13 of the equations of
motion, as 1s seen by the easlly veriflable relation

1 -

ry p3dq3 + padq2 + epldq1 - Hdt =

'% p3'dq3' + pz'dqz' + ep,'dgy' - H'dt (26)
+ 4(F =~ % q3lp3| - q2lp2l - eqllpll)

whichBShows that Eq. 12 1s preserved, and hence 1lts consequence
Eq.la

¥ It 1s not always true that G 1s a single-valued function of
qQ, T; but this difficulty can be clrcumvented, at the cost
o} slightly complicating the discussion, by worklng with G as
function of Q35 Pq -
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Now the crux of the matter is that, by Egqs. 23 and 2l we
see that

P, = pp' *+ O(¢) a9, = ay' + 0(e)

'+ 0(52)

P3 p3' + 0of 32) q3 Q3

and hence by Eg. 18 we see that

H' = H + 0(¢)

It follows by the construction of ql s pl' that Ho’ as function
of q1 R pl' has the form
|)2

Ho = Ho'((ql + (pl')z, q2'oP2':Q3"P3',t) + 0(¢e). (27)

We have made progress toward our goal, We have now that H' has
the form

|t

1)2

H' = 2 H (a37,p3',t) + Hy'((qy")% + (py 1), .0 )vel+ ooy (28)

The next step is to repeat the process., Namely we define
ql", pf’ 80 that the lines

[} t =
Ho + eHl constant

become concentric circles centered at the origin, when drawn in
the qy" -~ Py ¥ plane, These lines already deviate from circles
onl %y 0(e), so that gy”, py”’ need differ from qy', py' only by
O(e)e The generating function G in Eq. 22 can be taken to be of
the form

G = ql'pl + EGl(ql'o pl”)' (29)
We have then

=1 u ! 2 /
F=ga3'py + ap'ppl + eqy'py "+ €76 (ay',py ")

and we find
Pyt = ot + 0(e?) a,' = q," + 0(e?)
2 2 2 2
3 3 3 3

' = H + 0(62)

and we obtain

B'= 1 8 (a30,05', ) + BL2) (g, )24(p,"2, 0 )+e?mlP)s .

The process can be repeated again, working with H(2)+ € éZ),
and so on, Finally we get

M1y (q‘N),pgN’ £)+ BV (@) 2 ({82, [ )+0(e™) (30)
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An? ?ow, using the first pair of Eqs., 13 to compute Q{N) and
ﬁl NJ, we readily see that

& (M2 4 ()2 = oM (31)

It remains to identify the invarlant here as the magnetic moment,

By the sarea-preserving character of tge mapping of q pl into

@', p1' we see that m[(gy')2 + (p3')¢] 1s the area inslde 2 line

E = e¢onstant in the a7 5P plane, and hence, by Eqs. 17 and 2 we
ave

b~ @2 4 )2 2 (g 02 4 (9,102 + 0(e) =
, , (32)
o — 4+ 0(e) = Jm + O(¢)
[Fa x 98| B

Hence we have the result of Kruskal which was mentioned above.

qi plane, then p = r¢ and «8/2 are canonically conjugete,
8ince area 1s glven by

§p{N)dq{N) = §5‘22- de = f p d(-6/2)

Since H(N) to order e'-1 depends on p but not on @, we see that
18 }s constant because 1t is conjugate to the 1ignorable coordinate
-8/2,

N) We Tﬁg note that if r, ©_are polar coordlnates in the
e !

i« The Second and Third Adiabatic Invariants

We now not? 3h5t exce?t fgr errors of high order in € we
can replace (gq,{N/)e + (p N))€ in Eq. 30 by the constant p.
Then we have eTfectively a Hamiltonian with two degrees of
freedom, which describes the motion of the gulding center of the
perticle., Suppose now that

(1) the electric field 1s small

(2) the magnetic field varies slowly in time

Then the Hamiltonlan of the gulding-center motion 1s

H= % (f + a %%) + % {p22 + ij + higher order terms (33)
as we see from Egq, 1lli. The coefficients are to be evaluated at
S =0y 5, &% Py, B = a,
For fixed velued of q3,p3,t, we have

H = const. +-J§{p22+pla-j§g-ds}+ (34)

It is well known that 1t is appropriate to define a second adla~
batic invarient, assoclated with qp, pp, when the lines H =
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constant are nested closed curves In the qp=-pp plane. We see
from Eq. 3l that thils will be true if

uB = f E,/¢e ds

increases enocugh as one traverses a magnetic line in esach
direction, and hes only one minimum on the line.

The method applled to the magnetic moment works here. We
can show that

56 podg, = § v, ds
is the first term of a series which 1s constant to any order in
€, and a parameter measuring the smallness of T and the slowness
of the time variation. As before, any canonical transformation
can be applied to g5, p,, and produces a result which is, to
lowest order, the same as if H did not depend on q3,p3,t. This
fact permits the carrying out of the construction.

If a second adiebatlc inverlant exists, then the system
reduces to one having one degree of freedom, since a coordinate
1s ignorable, This system describes the long-term drift of the
gulding center from one line of force to another. If time
variations are extremely slow, and the curves H = constant in
the qy = P3 plane e closed, then it has been polnted out by
Tellef and”Northrop that a third adiabatic invariant may be
defined. The validity of this concept follows again, by
application of the methods explained herein, The approprilate
definition of the third adiabatic invariant follows at once from
Eq. 15. We see that

$pag;=Pas=faTVo-az=§% . a

Hence the thilrd adlabatic Invariant iIs the flux through the
tube of lines occupied by the particle,

i See the paper by E. Teller and T. Northrup in these
Proceedlngs.
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AN "ADIABATIC INVARIANCE THEOREM'" FOR LINEAR OSCILLATORY
SYSTEMS OF FINITE NUMBER DEGREES OF FREEDOM

Andrew Lenard
Project Matterhorn, Princeton University

Abstract

The subject of this paper is the asymptotic behavior of
a linear, oscillatory system in the limit where the coefficients
vary slowly compared with the characteristic frequencies.
Two theorems are stated and proven rigorously. The first one
concerns the asymptotic expansion at times when the coeffi—
cients do not vary. The second states the sense in which the
expansion is an approximation to the exact solution. Two
simple special cases, given as examples, are (1) the quantum
mechanical adiabatic theorem, and (2) the adiabatic invari=-
ance theorem for the harmonic oscillator.

The purpose of the following paper is to derive a general ''adiabatic
invariance theorem' for a linear, oscillatory system with a finite number
of degrees of freedom. Such a system can be characterized by a set of
coupled, ordinary, linear differential equations, which we write in matrix
form:

a2 - AX. (1)

Here A and X are square matrices of q2 complex elements. The system is
oscillatory if the eigenvalues of A have vanishing real parts. The system is
non—degenerate if the eigenvalues are distinct. These conditions will be
assumed in the following. If the matrix X(o) is non—-singular, then X(t) will
be non—singular for all t, and the q columns of X give q linearly independent
solutions of the differential equation.

From the assumptions made about A it follows that a non—singular
matrix R, and a real diagonal matrix Q exist such that

1

RAR T iQ. (2)

Furthermore, Wy = Qaa are distinct (@ = 1, 2, . . . q). The columns of

R are the eigenvectors of A. R is determined only up to a transformation of



the form
ﬁR — RC (3)

with a diagonal matrix C. This corresponds to the arbitrariness in the

normalization of the eigenvectors, If the matrix A is independent of t, a
solution of Eq. 1 is

X = R exp {iQt} (4)

and the most general solution can be obtained by a transformation X — XK
with an arbitrary constant matrix K.

Consider now the generalization of these elementary facts for the
case of a slow time variation of the coefficients A. Slowness is measured
by the ratio of a frequency typical of the time variation of A to the order of
magnitude of its characteristic frequencies. We are thus led to investigate
the asymptotic behavior of the solution of the equation

dx -
—— = X (5)
with the real parameter A\ — o, while A = A (t) is assumed to have a

specified time dependence independent of A. This problem was thoroughly
investigated long ago by Birkhoff and La.nge:x:1 They considered the more
general problem without the restriction that the system is oscillatory and
also A was allowed to be complex. We shall recall the essentials of this
theory as applied to the simpler case considered here.

Let us assume that A, R and § have time derivatives of all orders,
and that at the time t = O they vanish. Let us put

t
X = RY exp {mg Q dt} (6)
0

and let us try to determine a formal power series in )\_1

A y(n) gy (7)

NS

0

=]
1]

which, when substituted for Y, will make Eq. 6 satisf{y the differential
equation 5. In order for this to be the case Y has to satisfy the equation

n(QY-YR) = - + oY (8)

where Q = R_l(dR/ dt). The conditions for this to be a power series
identity in x~1 are

i(w, - wB) Yé%) =0 (9)
and
. (n—-1)
i (wa - wﬁ) Ygz%) =( %;Y_ + QY(n - 1))aB (n = 1) (10)

1. G. D. Birkhoff and R. Langer, Proc. Am. Acad. Arts and Sci. 58, 51
(1923). Also reprinted in "Collected Mathematical Papers' of G. D.
Birkhoff.
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First put@ = B; this gives

ay'™ ) ) =0 (n = 0). (1)

dt oo

By making use of the freedom allowed by the transformation, Eq. 3, we can
always make the diagonal elements of Q vanish. Then Eq. 1l allows the de~
termination of the diagonal elements of Y'\™/ in terms of the off—diagonal
ones; moreover, we set as initial conditions

Y(alz (o) = 0 (n = 1). (12)

Y&(&)(o) can be left arbitrary; moreover, as will be shown below

(o) = =
Yaa(t) = Ca = constant. (13)

Next takea # B; Eq. 9 implies immediately

Yol = o @ # B (14)

This, coupled with Eg, 11, substantiates the statement that the Yci;) are time
independent. Finally, the Egs. 10 give a set of recursion relations by means
of which Y(C;IB) (0 # B)can be expressed in terms of the elements of Y(k)

(0 < k< n), Qand Q. Thus the scheme of satisfying Eq. 8 formally by

Eq. 7 is complete. '

We shall prove two theorems. The first one concerns an important
property of the formal expansion, Eq. 7. The second one establishes the
relation of the series, Eq. 7, to an exact solution of Eq. 8.

THEOREM 1, Ifatt = ts all time derivatives of A(t) vanish, then

forZkt = ts all time derivatives of Y(n) vanish and all off-diagonal ele—

ments of Y(n) vanish.

The proof consists of induction on' n. Note that from the assumption
it follows that att = to 0 and d2/dt vanish together with all their time

derivatives. By Eqgs. 13 and 14 the theorem holds for n = 0, But by
Egs. 10 and 11 its validity for n — 1 implies its validity for n,

THEOREM 2, The series, Eq. 7, constitutes the asymptotic expan—
sion in inverse powers of X of that solution Y(t,A} of Eq. 8 which satisfies
the initial condition Yaﬁ' {(O,A) = C&Gaﬁ. This expansion is valid uniformly

over any finite time interval 0 < t =< tl.

This means that a constant M can be found (depending on n and t;
only, but not on t and A) such that

n-1 (k)
Y (t)
l YaB(t’)‘) _ ap < M (15)
k=0 )\k xn

foralle, 8 = 1,2, ...q;allt(0sSt=t)andallr >0,




To prove Theorem 2, let us fix n, and set
n

{n)
Y - E —Yn— + ——Zﬁ-— X (16)
k=0 A A

This defines the matrix Z = Z(t,)\). A simple calculation shows that Y
satisfies the differential equation, Egq. 8, with the given initial condition
if and only if Z is related to it by
t

t
t
Z(t,\) = 5 dtt Y(t,\) exp {ix S Qdt} Y-l(t‘,h) F(t1) exp{-ixj Qdt} (17)

o t! t!
where
F(t) = -0 Y ™)(e) - ﬂ(;—:)(;) : (18)
Suppose now that a positive number b1 can be found such that
|Ya6(t, A) < b (19)

| Yoait) | < b

fore, =12, ...q 0=t= tland allA > 0. Then if we denotebyb2 an

upper bound for the absolute value of all the matrix elements of F in
0=t= t;, we get from Eq. 17

2, .2
<
| zaB | q“tb "D, . (20)
If now b3 is an upper bound for the absolute value of the matrix elements of
Y(n) in the interval considered, we can set

2,.2

M = by + q°tjb'b, (21)

and then the inequality, Eq. 15, is satisfied, It remains to show the exist~-
ence of bl' The essential point is that the inequalities, Eq. 19, must hold

for all X > 0, even though the quantities on the left hand side depend on A.
However, from the differential equation, Eq. 8, it follows that

d 2 *

_— Y = =2R Q. Y .Y 22

g | Yo | eZy oy Yy8¥op, (22)
an equation in which A does not appear explicitly, Let us now set
N == | YaB [ ; then by a simple chain of inequalities we derive from

a]
Eq. 22 that
dN
| 9 | < abyN, (23)

where b4 is a bound for the absolute values of all matrix elements of Q in the

interval considered. But Eq. 23 implies that
N(t) < N(0) exp (qb4t). (24)

Thus we may take b, = N(O) exp {qb4 tl}’- and the first of the inequaiities,
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Eq. 19, has been demonstrated. To demonstrate the second one, merely

note that Y-1 satisfies an equation that differs from Eq. 8 only in that the
order of the matrix factors in the last term is interchanged, This does not
affect the argument leading to Eq. 24, and the proof of Theorem 2 is com-
plete. '

We pass on to a discussion of the significance of the results obtained.
It is clear from the definition, Eq. 6, that the matrix elements of Y play the
role of expansion coefficients of the solutions of the basic differential
equation in terms of the eigenvectors of A, or in the usual terminology of
small oscillation theory, the '"normal modes." The exponential factor is
the fast oscillating phase. The initial condition that Y is diagonalatt = 0
means that the q solutions standing in the q columns of the matrix X are
those which att = 0 are the q '""pure modesg.'" Theorem 2 gives an approxi-
mation to Y in terms of power series in A~ which can be calculated to any
number of terms. Theorem 1 is a statement about this approximate solution,
It says that in regions where the coefficients of the Equation 1 smooth out to
constants, the q basic solutions become pure modes. This condition, im-—

posed initially on the solution at time t = 0, is conserved at any other time
t = to where the conditions of Theorem 1 are satisfied (of course, only to
-1

the extent of the approximation given by the asymptotic development in X

).

Note that Theorem 1 does not imply anything about the magnitude of

the diagonal elements of the Y( ), i.e., the amplitudes of the normal modes.,
It is therefore natural to ask: Under what additional conditions is it possible
to relate these diagonal elements in a simple manner to their initial values?

We claim that this is possible whenever some information is available about

the exact solution. The reason is that any exact information on Y implies

some corresponding knowledge about the Y(n) in view Theorem 2, and,

under the conditions of Theorem 1, the Y( n) assume the simple diagonal form,
so that this information can have implications regardmg the diagonal ele—
ments about which Theorem 1 makes no statement, We shall illustrate this
in two notable examples.

EXAMPLE 1. Suppose A = iH, where H is a Hermitian matrix.
Then Eq. 1 becomes the Schrodmger equation for a system with a finite
number of non—degenerate energy eigenvalues with the Hamiltonian operator
H. In such a case X, R as well as Y can be chosen to be unitary matrices,
consistently with all our assumptions. But a unitary and at the same time
diagonal matrix has diagonal elements of absolute value one. Hence in this

case not only is Y(n) diagonal under the conditions of Theorem 1, but also
(o) - (n) _ - - : (n) _ -

IYaa | = 1and Yaa = 0 {(n = 1), This fact, together with YaB =0

(0 # B, n = 0), is the expression of the quantum mechanical adiabatic

theorem whose proof to all orders in k_l was supplied by the author of this
paper

EXAMPLE 2. Let A be the two—rowed matrix

A = 2 (25)




where ¥ = v(t) is a real, positive function. The system of equations corres—
ponding to this choice of A is more familiar in the form of a single second
order equation obtained by eliminating the variables XZa:
ax 2 2
1o + A X = 0° @ =1,2). (26)
— 1o
dt™
This is the equation for a harmonic oscillator with a time varying natural
frequency Av(t). We have two exact properties of the solution. Firstly, A
is a real matrix. This implies that

X lX = constant. (27)

Secondly, the trace of the matrix A vanishes. This implies

det X = constant. (28)
These two exact contants of motion must be expressed in terms of Y and
then use must be made of Theorem 1 in order to see what the implications

are for the non—vanishing d1agona.1 elements C {@ =1,2). One easily
checks that

1 1
p2 yo2
R = N 1 (29)
iy 2 —ip?
v 0
2 = (30)
0 -y

so that through EqQ. 6 we can express the '"constants of motion'', Eq. 27 and
Eq. 28, in terms of the Y. When this is done, and use is made of Theorem
1, we obtam C,C, = constant, and C / C = constant respectively, These
1mp1y that the diagonal matrix elements of Y have constant absolute value
at points where Theorem 1 applies. Thus the amplitudes of the oscillations
vary from one such point to another as shown by the columns of R; in

X]a | 2 are constants {(of course, only asymp—
totically to all orders in A). This is the usual '"'adiabatic invariant" of the
harmonic oscillator, whose validity for all orders in x’l was proved by

R. Kulsrud.

particular the quantities v|

Finally, it should be pointed out that a completely analogous pro—
cedure shows that a coupled system of harmonic oscillators also has its
adiabatic invariants. Not only do normal modes go over into normal modes
(Theorem 1), but their amplitudes are regulated by the same inverse
square root law that holds for a single harmonic oscillator.

3. R. Kulsrud, Phys. Rev. 106, 205 {1957).
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-_—

PARTICLE ORBITS IN TIME DEPENDENT
AXISYMMETRIC MAGNETIC FIELDS

S. Tamor :
General Electric Research Laboratory, Schenectady, N. Y.

Abstract

The motion of a charged particle in a rapidly
varying spatially uniform axisymmetric magnetic
field is studied. For particular time dependences
of the cyclotron frequency, ¢« (t), the trajectory
is obtainable in closed form. If the field is vary-
ing slowly at the initial and final times a simple
connection is found between the initial and final
orbits. If we consider two field programs, & (t)
and &)y (t) each of which varies rapidly, but whose
ratio changes slowly, it is found that this connec-
tion is the same for both time dependences and hence
defines an extended adiabatic invariant.

This paper describes an investigation of a class of problems
in which the orbit of a particle in a time-dependent magnetic
field is obtainable analytically. While the methods are rather
straightforward and elementary, the results provide some insight
into the general class of problems in which the adiabatic
approximation does not apply. The origin of this work was an
attempt to study the behavior of fast devices of the Scylla
variety in terms of individual particle trajectories. We
therefore examined the orbits of a particle in a time-dependent
axisymmetric magnetic field.

Consider a cylindrical volume in which there is a magnetic
field in the axial direction, which is given a function of time,
but independent of coordinates. We are to obtain the orbit of
a charged particle in terms of the injection conditions.

From the axial symmetry, we find at once, that the
generalized angular momentum, P is a constant of the motion.
The equation for the radial motion 1s simply
2
e @6 ,_ O @)

r
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where & (t) = —EgéEl— and C = Pg/m . The non-linear term

on the right hand side of Eq. 1 represents the centripetal
acceleration and can be eliminated by a transformation.

t
w(e) = () cos (cf —‘jt—) (2)

ro(th)

Let

]

whose inversion is

t ' 2N\1/2
r(t) = u(r) £1+<c.f —3"——) 3).

Then Eq. 1 reduces to

- 2
b+ 511551— p =20 4.

If p(t) is a solution of Eq. 4 satisfying the appropriate
initial conditions and pt(t) is any other solution of Eq. 4 which
is linearly independent of p, so that the Wronskian\y W, u+} is
non-zerc, then the integral in the inversion formula, Eq. 3, is
simply '

dt' 1 W (v)

uz(t.) = W L{t)

By this set of transformations the orbit problem for arbitrary Pg
is reduced to that of Py = 0

It is well known that when the adiabatic condition is satis-
fied, i.e., when

"H%_wul <<1:
that the solutions of Eq. & are approximated by
- sin(y(t))
H ='aﬂ 1/2 { (3)
cos (y(£))
1 t
where y(t) = 'TT]/“ w (t')dac! (6).

It is convenient to describe the orbit in terms of an
instantaneous cyclotron radius, A, and guiding center coordinate,
R. It's easy to verify that the conservation of Pg implies

Q)(R2 - xz) = const. (7)

Furthermore, in the adiabatic limit, combining Eqs. 3 and 5 gives
an explicit, but lengthy, expression for the quantity

Jeol ®2 + %)
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in terms of elementary functions and constants of integration.
The problem is to find these constants of integration.

In the following we confine our attention to (w(t) satisfying

lim q 1
‘t'_”o—d_t—a) (t) =0 | (8).

We specify the orbit in terms of the initial coordinate and

velocity at t = t; and examine the trajectory at some later time ¢t,
passing to the limit |to|—>©0 , | t|—>©0 | 1If t and.ty have the
same sign, from Eq. 8 we see that the adiabatic approximation applies
throughout the motion, but if t and ty have opposite signs this is

no longer true.

Let us first consider a class of @ (t) for which Eq. 4 is
integrable analytically. Taking
n

w(t) = kt ; n>-1
W(-t) = + a(v)

the condition Eq. 8 is satisfied but in the vicinity of t = 0 the
non-adiabatic effects become very large. For this ¢)J, the
solutions of Eq. 4 are of the form

t1/2 [J\) )
Yy )

where V = (2n + 2)-1 . To connect the solutions for positive and
negative times one must remember to use the analytic continuation
formulae for the Bessel function. Having a pair of linearly
independent solutions to Eq. 4 the constants of integration are
obtainable and the equation for the trajectory exhibited explicitly.
While the orbit is in general very complicated and depends in

detail upon the injection conditions, a rather simple result can
be extracted in the limit [t], |t |—> o0 . That is that

aXt)| ®3(e) + 2% (6)) >

=1lim
K{Q-}=|t0| s el >0 Nw(v) [(Rz(to) + %z(to))

=1+27cot7r1) (9

The symbol { ? indicates that we are to average the initial time,
to, over a single period, @ -l(to). The quantity 7 is defined to
be zero if t and to have the same sign, and 1 if they have opposite
signs. The notation K Cﬂ}indicates that K is a functional ofea)(t).

Obsexve that all the consequences of the non-adiabatic
acceleration are contained in the 2% cot 7w/ in Eq. 9. The
parameter, ¢ , describing the nature of the singularity in
and the coefficient k does not appear.

-1
dt dJ

Equations 7 and 9 combined give the mean energy of an ensemble
of particles subjected to a single excursion of the field. An
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interesting limiting case is that of n =0 , & = 1/2 . If w(-t) =
@ (t) clearly nothing has happened. The choice ¢u (-t) = - (t)
means that the field changes sign stepwise at t = 0, and since only
|00|appears in Eq. 9, the initial and final orbits are related
simply by the interchange of R and A. In this case the average
over t, in Eq. 9 is not needed.

When the field reversal is slower than stepwisezthe particle
is free to execute a more violent motion while ¢ /e“ is small and
the non-adiabatic effect is increased. A physically interesting case
is that of n = 1 (the field changes sign linearly) so that the right
hand side of Eq. 9 1is equal to 3.

Qur problem now is to find out whether these results are
generalizable to other, more complicated forms of ¢) (t). Suppose
that for some © ,(t) the quantity K{G%J is known. Suppose this
W, is in some sense a good approximation to & (t). How well is
K{w} approximated by K Cdo} ?

We formulate this problem more precisely as followsi Consider
an & o(t) satisfying condition Eq. 8, and such that 57" is
continuously differentiable except at one point which we conven-
iently choose to be the origin of time. Consider another < (t)
such that @ (t)/&),(t) is continuously differentiable at t = 0 and
lim W(t) ko (t) = constant (not necessarily the same constant

|e]—> 00

for positive and negative t). Let the ratio <Jg/¢) be a slowly
varying function of time, whose rate of change is described by
a "slowness parameter', § . We seek to express K GJ?- K {wo

as a power series in

This problem,can be studied by an extension of the method
given by Kulsrud ~. The analysis is slightly more complicated,
but nothing fundamentally new need be added and only the result
will be given here. We find that K[&J - Ki}do} vanishes to as
many orders in & as #/o/¢) has continuous derivatives.

This enables us to generalize the concept of an adiabatic
invariant. Ordinarily one seeks ''local™ properties of the orbit,
such as energy, which is invariant under slow changes in & . Here
we allow @ to vary rapidly and find that another &, provides a
good model for @, in the sense that an '"integral property' of
the orbit, K, is the same for @ and &, if P,/«) is slowly varying.
With choice of the model function & o = const the conventional type
adiabatic invariance is recovered.

1. R. Kulsrud, Phys. Rev. 106, 205 (1957).
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PAPER 32

MAGNETO-HYDRODYNAMIC SHOCK STRUCTURE
WITHOUT COLLISIONS*

Cathleen S. Morawetz and Herbert Goertzel
Institute of Mathematical Sciences
New York University

Abstract

The problem of proving the existence of a magneto-hydrodynamic
shock without collisions consists of finding a solution to two Boltzmann
equations without collision terms and two Maxwell equations. For a
classical shock structure the solution would lead from one constant
state at large distances in one direction (the state ahead) to a different
congtant state at large distances in the other direction (the state be-
hind). However, a solution which leads from a constant state ahead to
a periodic state behind may be interpreted as part of a shock if the
entropy in some sense increases, Such solutions have been shown to
exist theoretically if the mass ratio is very small and the character-
istic wavelength is kept fixed. This length is the geometric mean of
the distances the ions and elecirons move forward in a complete change
of phase in a constant magnetic field. The prescribed distribution
function for the ions ahead of the shock is a Maxwellian cut-off at some
Speed. Such solutions have now been computed for various values of
the Alfven number, pressure and cut-off speed ahead of the shock. For
certain cut-off speeds there is no "shock'. For other values of the
cut-off speed, in a certain range of Mach numbers, there is a shock
in the sensge described above with a large change in the mean magnetic
field. The mean magnetic field, for example, may be increased
through the shock by 75 percent and the oscillation is about 20 percent
of the final value. Therefore entropy increase is a large fraction of
the theoretical maximum. '

The work presented in this paper is supported by the AEC Computing and

Applied Mathematics Center, Institute of Mathematical Sciences, New
York University, under Contract AT(30-1)-1480 with the U. S. Atomic

Energy Commission.
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A shock structure analysis of a medium strength steady shock involving
no collisions was presented last year. 1 It used the fact that the ions are
much heavier than the electrons. This report presents the results of numeri-
cal computations based on the analysis.

First we pose the full problem and discuss the earlier analysis. One
wants to find a flow which leads from one constant state (given) very far in
one direction to another constant state very far in the other direction. The
width of the transition should be such that it'is reagonable to approximate it
by a sharp discontinuity.

We consider only the case in which the magnetic field at large distances
is perpendicular to the direction of flow. The variables of the flow are the
two distribution fungions fy for the ions and electrons, the electric field E
and magnetic field H. There is no dependence on time and x is the space
variable. Then f; are functions of x and the two components of velocity
u, V.

The equations governing the flow are the two Boltzmann equations,
without collisions, for fi,and Maxwell's equations which involve integrals
of f, in the charge density and current. The boundary conditions given at
x=-o, are By =0, Ey#0, E; =0, Hy =0, Hy=0, Hy #0. fy=15,
f_ = 2 when f{ are any isotropic distributions consistent with the constant
state. - '

Nothing is known about the solution of the full problem but there are
four alternative possibilities. a) No solution exists. b) There is a shock
solution i. e, a solution which approaches a constant state as x - o which
is different from the given state at — ». ¢) The solution is a pulse, i. e.
the state at + « is the same as the state at — ». d) The solution does not
tend to a constant state at + oo,

Within the approximation based on a large ion to electron mass ratio,
there is no strict shock solution b}, For a certain range of parameters
a) occurs and for other ranges either alternatives c) or d). Alternative c)
bears no relation to a shock. But in d) one finds,at + o, fields that are
periodic in x; the pressure oscillates around a mean pressure much higher
than at x = - «@., If the oscillations are small not much energy is in the
vibrations. We may interpret such solutions as shock solutions. In calcu-
lating them we find that they correspond to a low 3 and a big increase in
ion temperature.

For the approximation we set A’m_/m_ = €, introduce as a fixed
length the geometric mean of the distances an ion or electron moves forward

1. C. S. Morawetz, "Steady State Shock Model,"” Controlled Thermonuclear
Conference, Washington, D.C., February, 1958. TID-7558. See also a
summary in C. S. Gardner et al., '"Hydromagnetic Shock Waves in
High-Temperature Plasmas, " Papers Presented at the Second Interna-
tional Conference on the Peaceful Uses of Atomic Energy, Geneva, Sep-
tember 1958, NYO-2538, Institute of Math. Sci., NYU, Jan. 1958.
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in a gyroperiod and normalize the fields so that the magnetic field is of
order 1 but the charge separation field is of order 1/e.

The functions f; can be found as asymptotic series in €, For elec-
trons the procedure follows the method of Gardner-Kruskal et al. For ions
the expansion is in some res;ects more straightforward. However we must
take = exp - K( (1-w2+v?) for (1-u?+v2<R2 and f®=0 for
(1-u)2 + v2> R2. Here K is a dimensionless constant which measures the
ratio of thermal energy to the energy of translation, K ~ 1/28. The mean
velocity at —~ o is normalized to 1 and R, the cut-off radius, is a number
< 1 which is chosen differently for different problems. (There is one other
dimensionless parameter A the ratio of mean speed to Alfven speed at — «.)

For any problem we take A, K fixed and study the solution to lowest
order in € for different values of R. For R small all ions pass through
without turning around and the flow returns to the state it was in at — «
(case c)). As we increase R we reach a critical value beyond which there
are always some ions that turn around. Thus theoretically we get solutions
when the mean velocity and magnetic field change monotonically. Because
of the characteristic length the electrons are adiabatic and the ions are
heated,

If we let R -~ 1 we can again show that our approximation breaks down.
That is, it is not valid for ions that just barely escape turning around in the
constant field at -, It is therefore necessary in computing to have R big
enough so some ions turn around and small enough so approximation is valid.

This means that if we want to picture our cut-off Maxwellian distribu-
tion as an approximation to a true Maxwellian, then the distribution function
must be very narrow, i.e., K is big or 8 small.

The computations were made with two additional assumptions: 1) The
total charge density is zero -- there is virtually no loss of accuracy.
2) Where the change in magnetic field is small and the electric field is of
order 1 particle paths have been computed as if the fields were constant.

With A =1.4, K = 4 we find that the field quantities are very sensi-
tive to the value of R, see Figures 1, 2, 3. In fact solutions cease to exist
for R > .45,

With A =1.4, K =75 we find thatas R increases weapproacha region
where the fields vary little with R, Figures 4, 5, 6. Here we get finite
oscillations about markedly increased mean values. We may expect this
solution to be a good approximation to a true solution of the full problem .
The initial increase of H with no change in n (essentially the charge separa-
tion field) takes place in a kind of boundary layer of width O(1/¢) ahead of
the main transition region. In fact this boundary layer plays a fundamental
role in analyzing the motion of the ions.
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PAPER 33

INCREASED DISPERSION AND RESISTIVITY
IN A NONSTEADY PLASMA#*

Harold Grad
Institute of Mathematical Sciences
New York University

In thermodynamic squilibrium, charge fluctuations in a
plasma give rise to electric field fluctuations, i.e. they
excite plasma osclllations. These osclllations are damped
quickly if the wave length 1s comparable to the Debye length
or 1s smaller, but large wave lengths are only slightly damped.
This is compensated by the fact that the sexcitation is small
for large wave lengths. These fluctuating electric fields or,
equivalently, encounters between particles give rise to the
dynamlcal frictlion and dispersion coefficlents in the Fokker-
Planck equation.

In a non-equilibrium state, there are external {(as
distinguished from thermal charge fluctuation) sources of
exciltatlion. These glve rise to additional plasma osclllations
superposed on the thermal background, These oscillations can
be the consequence of instabilitles or merely the result of
complicated initlal conditions or external Influences brought
to bear on the plasma. The large wave length components (larger
than the Debye length) can be very slowly damped and can there-
fore be present with much larger amplitude than is expected
from thermodynamic considerations.

To estimate the effect of such externally induced plasma
oscillatlions on the value of the dynamical friction and disper-
sion coefficients requires an estimate of the magnitude of the
fluctuating field and of the correlation time as seen by a
single particle., For example, a coherent, preclsely periodie
plasma oscillation will produce no net effect on a constant-
speed particle since one half-cycle exactly cancels the next,
Let us assume that a certain number, v, of plasma oscillation
periods 1is the correlation time; i.e. the fluctuating electric
fleld is coherent over v wave lengths. In one half-cycle, the

“ The work presented in this paper is supported by the AEC
Computing and Applied Mathematics Center, Institute of
Mathematical Scilences, New York University, under Contract
AT(30-1)-1480 with the U. S. Atomic Energy Commission,
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impulse on a particle of mass M is

8(Mv) = eE/() (1)

where E 18 a representative amplitude of the electric field and
is the plasma frequency,

Q2 = nez/xom (2)

(m is the mass of the electron.) In one correlation time,

¢ = y/(], the net, uncancelled impulse has the same order as in
Eq. 1. After a time large compared to 7, _say NT, the root-mean-~
square expected impulse has a magnitude /N times the value given
in Eq. 1, ’

ov = VN £ . (3)

We set Ov =|/kT7M and solve for the value of N,

2
N, = S50 - L O (1)
e E X E
o]
This is the number of correlation times required to produce a
deflection of 90° in a representative particle; N,¥ is an

oequivalent collision or thermalization time, and NdU\/kT7ﬁ
1s an equivalent mean-free-path,

2
* _ _ M {(kxT)
L—Nofmﬁ_—\'a—n- (S)
de E
Here d 1as the Debye length,
a2= kT =)C0kT . (6)
mS)? ne2

We compare L* with the mean-free-path for thermalization of the
particles M among themselves which cen be expressed as

X de2

L= g0, (7)
-] 1ogf\

and obtain

#*

L M kT

L -y f&¢[:( ) . (8)

L S beng

The denominator of the last factor is the electrostatic ensrgy
in a Debye sphere.

The maximum electric field that one can expect to arise
in a plasma has the order

eEd = kT (9)
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which ylelds the minimum value for L°/L,

L _ M 1
T =V logA\/%E; (10)

A reasonable estimate for v might be 10; log f\ 1s on the
order of 15; in a high temperature plasma nd3 (the number of
particles in a Debye sphere) may be on the oprder of 10°, We
conclude that, for deuterons (M/m ~ 3600), L™ might be as small
as L, signifying that the extraneous electric fields are as
important gs the thermal fluctuatlons, whereas for electrons
(M ~m), L” can be even much smaller than L. Alternatively, L~
becomes comparable to L for electrons when the fluctuating
electric field is as small as one per cent of the maximum that
can be encountered.

We can draw the following conclusions. In a boundary layer
or sheath where we know that the steady velue of E is comparable
to the "meximum" value in Eq. 9, even a very slight unsteadiness
of the sheath can increase markedly the dispersion (and therefore
the resistivity). In the interior of the plasma, it is possible
for moderate amplitude electric field oscillations to have the
same effect, In the early stages of mixing of crossed or reversed
magnetlic fields, it 1s likely that a large part of the current is
confined to a narrow region in which there 13 also a very large
electric fleld, This situation could lead to an excessively
large resistivity of the plasme 1tself, Since this phenomenon 1is
inherently 1naccessible to preclse theoretical computation, great
caution should be exercised in employing resistivity measurements
as & dlagnostle tool.
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PAPER 34

STABILITY OF RADIOFREQUENGCY PLASMA CONFINEMENT

J. W, Butler
Argonne National Laboratory

Abstract

The stability of confinement of a conducting fluid by rf
electromagnetic¢ fields is investigated statically in plane geometry
by assuming that only time averaged field pressures need be considered.
It is found that the set of perturbation wave numbers can be divided
into stable and unstable intervals. In general, the confinement is
stable if the wave length of the boundary deformations is sufficiently
short. Similar results are obtained if various steady magnetic
fields are also postulated to be present.

The problem and solution discussed below are part of a general study of the
possibility of plasma confinement by electromagnetic fields in which the frequency
is high engugh to require consideration of displacement currents %n the field
equations.~ The same problem has also been treated by E. Weibel.

Perhaps the simplest problem of the type mentioned in the title is that
exemplified by Fig, 1. The plasme is assumed to be a perfectly conducting
fluid, lesding to a sharp interface between plasma and field regions. If an
electromagnetic field consisting of transverse standing waves is excited in the
space between the fluid and the wall, and if the configuration is constrained
to.be invariant under lateral translations, it is easy to show that an equilib-
rium interface position exists, provided only that the internal energy of the
fluid increases indefinitely with decreasing volume, Here one needs an adiabatic
theorem for resonant cavities which states that the quantity

total field energy
field frequency

remains constant under slow deformations of the cavity walls,? Clearly, the
equilibrium interface may be located at 2=0.

1. J. W, Butler, Bull. Am. Phys. Soc., Ser. II, 4, 152 (1959) (Abstract).

2. Erich S. Neibél, On the Confinement of Plasma by Standing Electromagnetic
Waves, ARL-57-1009 (1957).

3. F. E. Borgnis and C. H. Papas, "Electromagnetic Waveguides", Handbuch der
Physik 16, p. 412 (1958).
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The next step is to remove the translation invariance in the x direction
and see if the equilibrium state is thereby altered. For a first order treat-
ment this is sufficient, since as will be seen, the field can be rotated to
any desired orientation. Accordingly, teke the new interface to be the
corrugated surface z = Ssinpx; the normal is evidently of the form n = (0(8),0,1).
Components of vectors are listed in conventional x,y,z order.

To caleculate the perturbed field to first order im &, form the scsalar
function
sinhx(d-z)
sinhnd
where ¥ = p° - k2 and k = n/d = o/c, the angnlar field frequency divided by light
speed. The transverse electric phasor 1s then constructed as

ey = sinkz - bksinpx

_E_t = (ae-b, tﬁt, EZ) »

in which a and b are arbitrary complex numbers amd E, is given by
4

3 .
E, = _~£\du(a'§§ eg) = 6 % cospx coshxd = O (8),

coming from the divergence condition divEy = O. This electric vector then
satisfies the required field equations

V2E, + kB, = O,

x B, = 0(6%) at 2

}=]

§sinpx,
nxE =0 at z = 4,

and, of course, divE; = O. It is possible to construct the perturbed field
without changing the wave number k because the perturbation considered does not
change the volume and hence, to first order in §, leaves the resonant frequency
unaltered,

The remainder of the calculation is routine, The transverse magnetic phasor
is computed from Maxwell's equation

and the field pressure acting on the deformed surface is evaluated as

Prf = <%ﬁ§s'gs*>;

where By 1s the value of By at the surface z = &sinpx, the symbol < > denotes a
time average, and * is used to indicate complex conjugation. The electric
field makes only a second order contribution to the stress tensor at the
surface, since the normal and tangential components of By are respectively of
order 5 and 6%. When evaluated in detail, the expression for P.p turns out

to be

_ AENNE . 1 | b]2 2 2 2 ]
Pop = _—Z,.p,c_z— [l + 26sinpx {i(mp -~k )COth’ld} + 0(8<) (1)

which indicates first order stability whenever the quantity in { } is positive.

The resulting stability diagram is as shown in Fig, 2; the hatched zones
contain stable parameter values,
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In the particular case of circular field polarization, one therefore has
instability in the p intervals defined by

k? < p2 < %2 (2)
and p2 < %kz.

Por elliptical polarizatlon, it is c¢lear that actual stability information can

only be obtained by orientimg the major axis of the electric polarization ellipse

in the x direction, since this 1s the least stable alignment and therefore the

most favorable for the growth of surface disturbances. This is accomplished by
assigning a real value to a and setting b = ira, (0 < r < 1), changing the inequality
2 to read

2 2 1+p2
k<p <-;‘-2—k2.
It is seen that the upper stability zone in the diagram evaporates as r-»0;
the lower ome, however, is unaffected. On the line p2 = kz, there is apparently
no first order solution to the field equations.

Stability can be restored in the plane polarized situation by introducing
a steady transverse magnetic field into the cavity region which is perpendicular
to the rf magnetic field. Indeed, thils causes the resultant field vector at
the plasma surface to oscillate in direction, which might be expected to have
a stabilizing influence similar to that. of rotatlion in the pure rf case.

By letting k=0 in Eq. 1 and suitably reinterpreting the numbers a and b,
one obtains the pressure distribution due to the perturbed dc field as
2,2 2
by by
= ____EZ; 1+ 26p sinpx - cothpd + 0(62) ) (3)
T b:c+by
in which by and are the components of the undisturbed magnetic field.
Returning to Eq. 1, let a and b have real values gnd spgcify the direction of
the resulting alternating magnetic vector by s = b2/(a® + ; orthogonality

of the rf and de fields then requires by2/(by2 + b¥2) = 1 - s, Making these
substitutions and adding Eqs. 1 and 3 yields the stability criterion

Pae

3(e2p2k2)eothnd + £2(1-s%)p cothpd > O, (4)

wherein f2 is the ratio of dc to rf field pressure, The stability chart
resulting from this ineguality is quite similar to Fig. 4 for reasonable parameter
values. Thus, taking £~ = 1 and approximating cothxd « cothpd ~ 1, it is found
that 4 is again satisfied for p? > 2kR, whatever the value of s. Inspection

also shows that, by making £2 larger, the instability zones can be reduced in
size but not eliminated; the inequality can always be reversed by choosing
slightly greater than k<.

If steady magnetic fields inside the "plasma" are allowed, it becomes
necessary to inquire into the kinematics of the fluld-field mixture. Further-
more, for a finite thickness, boundary conditions must be applied at the
interface z = - R (see Fig., 1), which makes further analysis of this particular
configuration somewhat artificial as applied to actual plasma confinement. One
moderately interesting problem, however, is obtained by restricting the unper-
turbed magnetic field inside the plasma to have only a 7 component. The results
in this case show that, for an infinite thickness (= «), the field component
b, has no influence on stabllity, although there is a favourable effect if the
thickness is finite and the region z < -} is assumed to be a rigid conductor.
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