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Milankovitch Cycles: Orbital Variations -
“external” forcing of climate variability
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“Internal” Variability
of the Climate
System

El-Nino / Southern
Oscillation

Instability of the air-
sea system in the
equatorial pacific

*Irregular
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Temperature Anomaly (°C)

Climate and Climate Change:
External forcing + internal variability

Global Mean Surface Air Temperature
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« Baseline: avg atm
state 1950-1980

* Focus: last 200 yr,
since industrial rev

 Instrumental record

* Projection: Next
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Physics of Climate

Climate Forcing

Imate Processes
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Energy Flux Density (W mr2pnr 1)

Blackbody Radiation

Planck’s Law:

The amount and spectrum of
radiation emitted by a blackbody is
uniquely determined by its
temperature

Max Planck (1858 — 1947)
Nobel Prize 1918

| Sun: 6000K - peak
1/ emission at 0.5 um
“Short wave”

1| Earth: ~300K - peak
1|/ emission 10-20 um
— | “Longwave”’

Wavelength (jm)
wavelength
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Energy Balance:
Incoming solar = outgoing terrestrial radiation
80/4 (1'&) — GT4

Simplest case:

S, -a S, s TA

O one layer atm;
l T greenhouse
gases;
No absorbers of
shortwave
l radiation;
S

) (1 _ OL) - Tg4 - Te4 o=albedo



Energy Balance at Top of Atmosphere:
incoming shortwave = outgoing longwave

Incoming Shortwave:
S, (1 —albedo)

High albedo:

Clouds (=10 um), ice,
deserts

Outgoing longwave
radiation: oT*#

High clouds radiate
at lower T

- E —
-, - At

. ¥ it
By

Longwave Flux (W/m=)




Climate and Climate Change

Physics of Climate
Climate Forcing

Climate Processes
Climate Change Response
Uncertainties



Since 1800: Atm CO, has increased by 30%

Increase in temperature // increase in greenhouse gases
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Climate Forcing:

expressed as a change in radiative heating
(W/m?2) at surface for a given change in trace
gas composition or other change external to
the climate system

14202 Cumulative climate forcing since 1800
= Volcanic
CFCs 0.4+0.2 Aerosols
0.35+0.05  0.3%0.15 N.O Forced Land (range of
R __l_ 0.15+0.65 Tropospheric  Cloud Cover decadal mean)
! d S Aerosols  Changes  Alterations
T L_l Sun
-0.140.1 Tropospheric L
Qzone J_ T -0.2+0.2
- . oo . s ’ (0.2,-0.5)
(indirect via (indirect via -0.440.3 (indirect via O3)
-1F Ojand H,0) stratospheric E -
ozone) _1'_?‘5
|( Greenhouse Gases ‘,’IJ |(—Other Anthropogenic Forcings—)l |eNatural Forcings—)]

Hansen PNAS 2001



Forced Cloud Changes:
anthropogenic aerosols may gp—pnnua
act as cloud condensation i
nuclei & change cover cover,
cloud drop size, cloud
lifetimes

Sep 11 2001:

Air Force One
+

9 military jets

) Jet

lusyTe contrails
stimulated
growth of
cirrus
clouds 5
hrs later

Jan 26 2001

Typical day: 700-800 planes




Ship Tracks:

- more cloud
condensation nucleli
- smaller drops

- more drops

- more reflective

S
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Climate Processes
DDTv-2Qxv=1/pVp-g+F
D/Dt (temperature)
= solar + netlR + sensible + |atent

rad rad heat heat
(clouds) (T, humidity)

D/Dt (humidity) = evap - condensation

D/Dt (liqg water) = condensation - evap



Saturation Vapor Pressure (mb)

Climate Dial
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: Three phases of water

A—>B

+ water vapor
+ greenhouse
Warming

A->C

+ water vapor

+ cloud cover

+ greenhouse

- absorption of
sunlight

lce = Liquid
+ absorption of
sunlight




Climate Forcing, Climate Processes and
Climate Feedbacks:

A given change in “external” climate forcing
(e.g. 2xCO,) will trigger changes in the
hydrologic system, atm circulation. These
“internal” changes will act to amplify or
damp the initial forcing.

AT _realized = feedback factor x AT _forcing



Climate Forcing and Climate Feedbacks:
AT _realized = feedback factor x AT _forcing

feedback factor ~1 -4 CO,: 300 > 600 ppmv
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Climate and Climate Change

« Climate Change Response



Increase in both atm and
ocean heat content since
1945: unlikely caused by
natural variability and
redistribution of heat

Global Mean Surface Air Temperature
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Global Mean Surface Air Temperature
8

Temperature trend
not caused by
solar variability

(meteorological stations)
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1.0

0.5

0.0

Anomaly (°C)

-0.5

“Forced” vs “Natural” climate change

Morthern Hemisphere Temperature Trends
(relative to 1961-1990 base period)

———— Temperature Trends

Mann et al reconstruction (annual mean, full hemisphere)

Jones et al reconstruction (summer, extratropical emphasis)

Briffa et al reconstruction (tree-ring density only, summer, extratropical)
Mann at al reconstruction (annual maan, 30MN-TON degree latitude band)
Instrumental (annual mean, full hemisphers)

Glacial-interglacial
10 K /10,000 yr
=1 K/1,000 yr

i [ AD 1000-1600:

0.9K /600 yr
=0.15K /100 yr
Cannot be ruled out

AD 1980-2000:
., Jostrynen®b K/ 20 years

Year “*  No evidence of abrupt
“natural” climate change

Uncertainty: natural climate variability on 102 - 103 years; abrupt climate change
For the next 100 years, natural variability unlikely to exceed 0.5K

Anthropogenically-forced climate change is real
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Ocean Circulation

Ocn currents ~ cm/s
Redistribute heat and salt

Suh vy Wind-driven Gyres (X,y,
are , sfc)
T Time scale ~ 107 yr

Thermohaline (y,z):
Convective overturning in
Greenland- Iceland-
Norwegian Seas
Upwelling in N. Pacific

Global time scale ~ 103 yr



Ocean for decadal & millennial climate models

Wind-driven + Thermohaline Circulation

 Momentum Equation (Navier Stokes) +
* Energy Equation

heat exchange at the ocean surface
 Salinity Equation
Freshwater fluxes at the ocean surface:
evaporation + precipitation

A temperature and salinity 2> A density 2>
A pressure gradient forces & buoyancy >
A ocean circulation > A SST = A atm circ - ...



Leaf Photosynthesis

C02 + H201—£CH20 + 02

Stomates

CO, in

H,O out (transpiration)

Stomatal Conductance
-function of ambient
Temperature, humidity
and C,-C_ = partial
pressure diff between

: ambient (Ca) and cellular
Bean leaf x4200 (Ci)




By how much will temperatures
change over the next 100 years?

CO, (t) » AT _surf
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Global Climate Models used to project
climate change from different CO, scenarios:
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Weather versus Climate Models:

 Weather models:
— Initial value problem
— Single integration from “observed” initial state
— Compare instantaneous state of atm
— Limit to predictability 5-10 days
« Climate models:
— Boundary value problem
— Perturb initial conditions > ensemble experiments
— Analyze circulation statistics

— Compare circulation statistics between
{experiment} and control



Confidence in Models Processes:

Model-model intercomparison
http://www-pcmdi.linl.gov

* Physics: e.g. Radiative transfer under
clear sky conditions

* Forced climate change (benchmarks):

— Paleo-climate: changed irradiance,
volcanic forcing, land cover

— Future: Prescribed dCO./dt (e.g. 1%l/yr)

» Circulation: Transport of inert tracers
(SFg CFC, '*C) in the atm, ocean



Confidence in Model Projections:

Model-Obs Comparison
http://www-pcmdi.linl.gov

* Internal climate variability: e.g.
prescribe interannually varying sea
surface temperature since 1980’s,
compare with satellite records

- Forced Response: Simulation of 20%
century climate,with atm composition
changes specified from obs



'Uncertainty in the climate change:
Will cloud height increase or decrease with warming?
[models: increase; more vigorous convection; +ve

feedback

~10%
Height o (T~220K)* Compared to clear sky:
High clouds warm;

12 Low clouds cool

o (T~T_sfc)?
>50%
o (T=T_sfc)*
e 6%

Temperature



Warming Odds for 2xCO, (benchmark):
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Andronova and Schlesinger, JGR 2001



Uncertainties

Shallow vs tall clouds {cT¢q_top*; latent
heating (z)} Turbulent transport in vertical:
space and time scales of instabilities <
resolved flow

Cloud albedo: drop size, N_drops,
condensation nuclei? Cloud microphysics —
coalescence into big drops

Aerosols and their radiative properties:
composition of aerosols? Single scattering
albedo?

Turbulence closure = parameterization



Uncertainties: Biology

UpScaling: stomatal CO,-H,O
exchange -2 canopy > ecosystems;
light, water, nutrient, CO, competition in
determining photosynthetic rates

No guidelines for biological behavior in
future climate — no past analogs
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Decadal to Millennial Climate Change

:—t(temperature) + = forcing terms

(clouds) (T, humidity)
SO,° CO,, CH,, CFC

Trop O,
----- Dust, Carbon Black ... =====---

Predict, rather than specify, changes in atm
composition {specify emissions}



Science Synergy:
OCO Formation Flying with the A-Train

Coordinated Calibration/Validation Activities The A'Trai n

PARASOL - polarization data CALIPSO __ AIRS -T, P, H,0, CO,, CH,
1:::1:'.|5_: oI clsudsat MODIS — cloud/aerosols, albedo
1
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‘nn \ 3 Aqua
1:33 - & I 31 .
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CloudSat — cloud cli =
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Hypothesis: Additional Climate
Feedbacks due to Plant Physiology

Warming _
due to In the tropics:

radiation  « Nutrient limitation of
photosynthesis

« Stomatal closure at
high water stress

« Reduces
"% Additional transpiration and
Warming ¢ (Causes net radiation
due to to be balanced by

plant physicloggengible rather than
latent heating

Sellers et al. Science 1996



Stomatal Suicide

+A CO,
+A T

- stomatal closure

-> less evaporation

-> shift to sensible heating
to balance net radiation

How to test the hypothesis?



Atmosphere: Characteristic

Absorption/Transmission for different atm
molecules for A: 0-15 ym

Atmospheric molecules responsible for absorption

Transmittance (%)

08 B L Transmission

1 1 B & i 1 ] 1 ] ] L 3
0 1 2 3 4 b 6 7 8 9 10 11 12 1314 15
Wavelength (um)

Peak terrestrial emission at ~300K




200 Q

Emp [m bllo::

00

1000

Atm
Circulation

Winds ~10 m/s

Intrahemispheric
mixing ~ 3 months

Cloud formation ~
minutes

ITCZ as barrier to
interhemispheric
mixing

Interhemispheric
mixing ~ 1.5 years
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