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Preliminary considerations

• Commonly invoked to explain the origin of cosmic magnetic fields

• Universe is a strongly magnetized place (now)

• WMAP. Universe was not strongly magnetized at recombination

• Something must have generated magnetic fields between then and
now

A hydromagnetic dynamo is a sustained mechanism to convert kinetic
energy into magnetic energy within the bulk of an electrically
conducting fluid

Assume magnetic fields are generated by dynamos
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Some examples

The Madison
Dynamo ExperimentLiquid metal experiments

• Typical size 0.5 – 2.0 m
• Turbulence driven by propellers

Geodynamo

• Size: 6,400 Km
• Turbulence driven by compositional

convection in the liquid core
• Evidence for magnetic reversals
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Some examples

Sun (late-type stars)

• Size 600,000 Km
• Turbulence driven by thermal convection
• Evidence for activity cycles

Accretion disks

• Typical size varies
• Turbulence driven by MRI
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Some examples

Galaxy

• Typical size: 1020 m
• Turbulence driven by supernovae explosions
• Field mostly in the galactic plane

Radio galaxies --IGM

• Typical size: 30 Kpc wide, 300 Kpc long
• Turbulence in central object driven by

gravitational/rotational energy of SMBH
• Evidence for expulsion of magnetic helices in

lobes
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A bit of history…

Montreal 2003

1908- Hale: Sunspots have strong magnetic fields

1919- Larmor: Dynamo action is introduced

1934- Cowling: Impossibility of axisymmetric dynamo action

- Need for three-dimensional motions

1955- Parker: Cyclonic events and the Γ-effect

1964- Braginskii: Nearly-axisymmetric dynamos

1966- Steebeck, Krause & Rädler: Mean field eletrodynamics

- α-ω and α2 dynamo models

1972- Vainshtein & Zel’dovich: Fast and slow dynamos

1979- Moffatt: Magnetic field generation in electrically conducting fluids

1995- Gilbert & Childress: Stretch, Twist, Fold

Now- Computer models, dynamical systems, spectral theory, cycle expansions, etc...
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Mathematical description of a dynamo

UB <<

,0 BJUB ×∇==⋅∇=⋅∇

Evolution described by the induction equation and Navier-Stokes equation

21 BUBBUB ∇+∇⋅=∇⋅+∂ −

mRt

21 FUBJUUU +∇+×+−∇=∇⋅+∂ −Rpt

In most astrophysical situations it is assumed that initially

cf dynamo action in laboratory plasma devices
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Some terminology

• Kinematic: If initial field is weak, Lorentz force is negligible.
Velocity is independent of B. Solve induction for prescribed
velocity (eigenvalue problem for growth rate).

• Fast/Slow: Kinematic growth rowth rate as Rm→ ∞ .
– Fast: Remains positive
– Slow: Negative or approaching zero

• Large/small: Characteristic scale of generated field
– Small-scale: Comparable or smaller that the velocity

correlation length
– Large-scale: Larger than velocity correlation length

• Require lack or reflectional symmetry (helicity/rotation)
• Existence of inverse cascades
• Mean field effects

– Mean induction α-effect
– Turbulent diffusion �-effect
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Fast dynamo action

Magnetic field grows if on average rate of field generation
exceeds rate of field destruction

• Magnetic field generation due to line stretching by fluid
motions

• Magnetic field destruction due to enhanced diffusion

Dynamo growth rate depends on competition between these two
effects. In a chaotic flow both effects proceed at an exponential
rate.
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Chaotic flows

Fluid trajectory given by

)0(),),(()( aXXUX ==
•

ttt

Follow deformation of cube of fluid of
initial size δx over a short time δt. New
size

),,( 321 ttt eeex δλδλδλδ
If deformation proceeds at exponential rate on average, flow is chaotic.

λ1, λ2, λ3 are the Lyapunov exponents . ( λ1 +λ2 +λ3 = 0 )

λ1 Rate of stretching λ3 Rate of squeezing
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Example of 2-D chaotic flow

Simple example of smooth solenoidal flow
with chaotic streamlines.

Streamlines

Finite time Lyapunov exponents

( )
( ,0, )

3 / 2 sin( cos ) cos( sin )
p z x

x t z t

ψ ψ

ψ

= −

= + + +

u

Red and yellow correspond to trajectories
with positive (finite time) Lyapunov
exponents λ1( , )x t

λ1

3λ

Rate of divergence. Local stretching

Rate of convergence. Local shrinking
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Line stretching in a chaotic flow

In a chaotic flow the length of lines increases exponentially (on
average)

l l( ) exp( )t tT= 0 λ

is the topological entropy. It satisfiesλT λ λT ≥ 1
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What about dissipation?

212 2 ARA mt ∇−=∂ −

|κ3| local rate of growth of gradients ⇒ dissipation also increases
exponentially.

In two dimensions κ1 = - κ3. Magnetic field is destroyed as rapidly
as it is generated.

Two-dimensional dynamo action is impossible (Zel’dovich 1957)

In 2D magnetic flux behaves like a scalar. Thus

Do dynamos operate at the rate ?&T?

( ) 0
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21 =∇⋅+∇−∂
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Introduce third dimension

0 ( , , )z xψ ψ ψ= −u

( , ) ( , , ) exp( )t x z t t ikyσ= +B x b

Simple modification leads to dynamo
action (Galloway & Proctor 1992)

Three-dimensional but still y-
independent.

However still have ?�1 = - ?�3
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Enhanced diffusion

Diffusion of magnetic field is determined by two processes:

• Growth in the magnitude of the gradients of B
• Geometry of the sign reversals of the field lines

Effectiveness of diffusion of a vector field depends also on how the field lines
are arranged

Effective Ineffective
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Enhanced diffusion

( ( ))
( )=

( )
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Effective diffusion of vector quantities depends on magnitude of
gradients and orientation. Packing becomes important.

||)( ∫=
ε

εµ Bdxs

k is the cancellation exponent. Measures the singular nature of
sign reversals (Du & Ott 1994 )
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Fast dynamo growth rate

Enhanced diffusion depends on the (exponential) growth of
gradients and on field alignment

Conjecture by Du & Ott (1995) for foliated fields as Rm → ∞

Local stretching

Local contraction

L t
L t

1 1

2 2
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Fast dynamo: problems

• Enhanced diffusion (cancellation exponent) requires global
knowledge of geometry of trajectories (very hard).

• What is the generalization of the Ott-Du formula?
– Give growth rate as a function of velocity statistics.

• Resulting magnetic field is a (multi)-fractal object. Describe in
terms of multi-fractal measures Dq, say.
– Give Dq’s as functions of velocity statistics.

• What happens after kinematic regime?
– Magnetic field re-laminarises?
– How does non-linear saturation occurs?
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1 2
t Rm−∂ =∇ × × + ∇B u b B

Two-scale approach. Separate variables into large and small-
scale components. Consider the evolution of the large-scale field

Saturation in mean field dynamos

Isotropic case

aámean induction

ßáeddy diffusion

In kinematic regime linearity of induction equation establishes a linear
relationship between mean field and mean emf

...+∂−=× kjijkjiji
BB �αbu
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• In kinematic regime a¥and ß¥should be determined solely by Rm and the
statistics of u

• aXis a pseudo-scalar (tensor) è requires lack of reflectional symmetry
• Simple solutions of dynamo equation

( )exp( ), , = ( - )t k k kσ σ α �= ∇ × =0 0 0B B x B B

with
= /ck α �

In large Rm situation aðand ßðshould have turbulent values. i.e. independent
of Rm

, , (1)cu u k Oα �≈ ≈ =l l

Dynamo sets in at small, rather than large scales (bit of a problem)

Transport coefficients
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Saturation in large scale dynamos

• In systems lacking reflectional symmetry mean induction effect (α-
effect) leads to growth of large-scale field

• Observations show that in many astrophysical systems large-scale
field is in equipartition with velocity

• This could easily be achieved if mean induction effect saturates
when

• Suggesting a phenomenological non-linear behaviour of the mean
induction term of the type

• However there appear to be problems when Rm >>1.

u≈B

22 /1 u
u

B+
≈α
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In 2D induction equation becomes scalar transport equation

With suitable boundary conditions we have
22 1 1 22 2t A Rm A Rm− −∂ =− ∇ = − B

• In order to maintain “turbulent” behaviour as Rm → ∞ gradients of A
must diverge

• Generation of small scale fluctuations increases magnetic field energy

2 2 ,
1 /

u B
RmB u

� = =
+

Bl

• Reasonable energetic constraint <B2> =pu2 , gives estimate

2 2 Rm=B B

Nonlinear effects: 2D diffusion

( ) 0,)( 21 =∇⋅+∇−∂×∇= − AARA mt ueB y
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• Assume diffusive behaviour of large scale component of A (D=�)
2

t A D A∂ = ∇

21 1 (0)
4 4

( ) ( , ) ( , ) exp

L

L

dD C
dt

C t t s i s ds

ξ

ω ω
∞

−∞

= ≈

= +∫ v a v a

• With diffusivity given by (Taylor 1921)

Effect on velocity field
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• Equivalent expression for α (Moffatt 1964)

1
6 L

d
dt

α = ⋅∇ ×?º ?º

• Kinematically some problems with convergence of integrals as Rm → ∞

• Non-linearly is there an analogy between 2-D diffusion and 3-D α-effect?
– Phenomenological argument (Vainshtein & Cattaneo 1991)
– Closure argument (Kulsrud & Anderson 1992)
– Quasi-linear closure (Diamond & Gruzinov 1994 )

Back to aŸ
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Most nonlinear treatments rely on two statements
– Geometrical (to maintain turbulent rate as Rm → ∞ something must

diverge)
– Dynamical (divergence is energetically impossible)

Assume suitable boundaries

Stationary, uniform mean field

From EDQNM, say (Pouquet, Frish & Leorat 1975), get dynamical
relationship

(extremely not-exact)α 	=− ⋅ − ⋅u ?� b j

Nonlinear effects

(exact)2 1 JBBA ⋅−=⋅ −
mR

dt
d

(exact)12 jbB ⋅−= −
mRα

http://www.go2pdf.com


Montana 2004

Combine to get saturation effects (as before)

2 2 ,
1 /

u B
RmB u

α = =
+

B

Nonlinear effects
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Non-linear saturation: problems

• Final result is correct but irrelevant
– time dependence is neglected
– large scale gradients are neglected
– special boundary conditions (no flux of helicity) are assumed

• Derivation is wrong/suspect
– Assumptions about correlation time need justification
– intermittency effects are neglected (possibly strong in 3D)
– last expression only valid for (moderate) Rm

• α-effect is not saturated in laboratory plasmas (rfp)

• If everything is correct, how do large-scale equipartition fields get
generated?
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Summary/Conclusion

• Dynamo theory does provide possible framework to explain origin of
magnetic fields in widely different astrophysical objects.

• At the moment most problems are associated with two things
• Large Rm limit

– Field develops complex geometry (fractal)
– Field develops singular sign reversal behavior

• Transition from kinematic to dynamic regime
– Does intermittent character of field change as it becomes dynamical?
– What is typical strength of magnetic fluctuations in the saturated

regime?
– Is the α-effect suppressed in realistic situations? What about the �-

effects?
– Does the turbulence develop a long-term memory in 3-D?
– Etc. etc. etc.

Dynamos are sneakier
than you think.
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The end
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Some (computer) examples

Non-rotating
convectively
driven
dynamo

Quasi-
geostrophic

driven
dynamo
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