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Preliminary considerations

A hydromagnetic dynamo is a sustained mechanism to convert kinetic
energy into magnetic energy within the bulk of an electrically
conducting fluid

Commonly invoked to explain the origin of cosmic magnetic fields
e Universe is a strongly magnetized place (now)
« WMAP. Universe was not strongly magnetized at recombination

« Something must have generated magnetic fields between then and
now

Assume magnetic fields are generated by dynamos
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Some examples

The Madison

Liquid metal experiments T

« Typical size0.5-2.0m
e Turbulence driven by propellers

Geodynamo

e Size: 6,400 Km

o Turbulence driven by compositional
convection in the liquid core

* Evidence for magnetic reversals

from Glatzmaier
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Some examples

Sun (late-type stars)

e Size 600,000 Km
o Turbulence driven by thermal convection
e Evidence for activity cycles

Accretion disks

o Typical size varies
e Turbulence driven by MRI
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Some examples

Galaxy

e Typical size: 10°°m
e Turbulence driven by supernovae explosions
* Field mostly in the galactic plane

Radio galaxies --IGM

« Typical size: 30 Kpc wide, 300 Kpc long

o Turbulence in central object driven by
gravitational/rotational energy of SMBH

* Evidence for expulsion of magnetic helices in
lobes

Radio Galaxy 3€219
VLA 20cm image
Copyright (c) NRAO/AUI 1999
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A bit of history...

1908- Hale: Sunspots have strong magnetic fields

1919- Larmor: Dynamo action is introduced

1934- Cowling: Impossibility of axisymmetric dynamo action
- Need for three-dimensional motions

1955- Parker: Cyclonic events and the Geffect

1964- Braginskii: Nearly-axisymmetric dynamos

1966- Steebeck, Krause & Radler: Mean field eletrodynamics
- a-w and a2 dynamo models

1972- Vainshtein & Zel’dovich: Fast and slow dynamos

1979- Moffatt: Magnetic field generation in electrically conducting fluids

1995- Gilbert & Childress: Stretch, Twist, Fold

Now- Computer models, dynamical systems, spectral theory, cycle expansions, etc...
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Mathematical description of a dynamo

Evolution described by the induction equation and Navier-Stokes equation

1.B+U>NB=B>NU+R'N°B
TU+UNU=-Np+J  B+R'N°U+F

NxB=NxU=0, J=N"B

R=UI/ , R_=Ul/h

In most astrophysical situations it is assumed that initially

Bl <<V

cf dynamo action in laboratory plasma devices
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Some terminology

Kinematic: If initial field is weak, Lorentz force is negligible.
Velocity is independent of B. Solve induction for prescribed
velocity (eigenvalue problem for growth rate).

Fast/Slow: Kinematic growth rowth rate as Rm® ¥.

— Fast: Remains positive
— Slow: Negative or approaching zero
« Large/small: Characteristic scale of generated field
— Small-scale: Comparable or smaller that the velocity
correlation length

— Large-scale: Larger than velocity correlation length
» Require lack or reflectional symmetry (helicity/rotation)
» Existence of inverse cascades

 Mean field effects
— Mean induction a-effect
— Turbulent diffusion -effect
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Fast dynamo action

Magnetic field grows if on average rate of field generation
exceeds rate of field destruction

« Magnetic field generation due to line stretching by fluid
motions

« Magnetic field destruction due to enhanced diffusion

Dynamo growth rate depends on competition between these two
effects. In a chaotic flow both effects proceed at an exponential
rate.
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Chaotic flows

Fluid trajectory given by

X(t)

X(t) = U(X(t),t), X(0)=a
Follow deformation of cube of fluid of

initial size dx over a short time dt. New
size

dx(el Lat | e| »t | e| 3dt)

If deformation proceeds at exponential rate on average, flow is chaaotic.

| 1,| 2,| 3 are the Lyapunov exponents . (| 1+ 124l 3 =0)

| 1 Rate of stretching | 3 Rate of squeezing
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Example of 2-D chaotic flow

Simple example of smooth solenoidal flow
with chaotic streamlines.

up :(y z’O’_y x)
y =~/3/2(sin(x +cost) +cos(z +sint))

Red and yellow correspond to trajectories
with positive (finite time) Lyapunov
exponents | (X, 1)

| | Rate of divergence. Local stretching

} - R el i
5 T L e e 1
Rl L e o b -E.{ﬂ' Rt T 1

s Rate of convergence. Local shrinking Finite time Lyapunov exponents
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Line stretching in a chaotic flow

In a chaotic flow the length of lines increases exponentially (on
average)
I(t) = 1, exp(l -t)

| . is the topological entropy. It satisfies | ;3

1

R PR ST P YR
1041 ///4?;
103; i?///
107 ///§§
IOII“Q:?ﬁy// slope = 0.36
160}

10 e

o 10 20 30 40
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What about dissipation?

Do dynamos operate at the rate ?&

|ks| local rate of growth of gradients P dissipation also increases
exponentially.

In two dimensions k: = - k.. Magnetic field is destroyed as rapidly

as It is generated. 3
B=N" (Ae,)

0, - RRZA+uxA=0
In 2D magnetic flux behaves like a scalar. Thus

T{A%)=- 2R {A)

Two-dimensional dynamo action is impossible (Zel’dovich 1957)
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Introduce third dimension

Simple modification leads to dynamo
action (Galloway & Proctor 1992)

Three-dimensional but still y-
Independent.

B(Xx,t) =b(Xx,z,t)exp(st +iky)

However still have 2. = - ?;

u0 :(yz’y Y x)

For R, >>1andk =0.57
A(s)»0.3
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Enhanced diffusion

Diffusion of magnetic field is determined by two processes:

- Growth in the magnitude of the gradients of B

e Geometry of the sign reversals of the field lines

Effectiveness of diffusion of a vector field dé¢pekids elso\gh the field lines
are arrannen

M

Effective Ineffective
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Enhanced diffusion

Effective diffusion of vector quantities depends on magnitude of
gradients and orientation. Packing becomes important.

\ a m(e()
m(e) = gPax| C (@)= e

flux

10F

—4 —3 -2 -1 a
lag{scale]

from Cattaneo

k is the cancellation exponent. Measures the singular nature of
sign reversals (Du & Ott 1994 )
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Fast dynamo growth rate

Enhanced diffusion depends on the (exponential) growth of
gradients and on field alignment

L, =exp(l ,at)
L, =exp(-|l ,Jdt)

Local stretching

Local contraction

Conjecture by Du & Ott (1995) for foliated fields as Rm ® ¥

R

= L|m—
dt® ¥ Jt

(LL)
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Fast dynamo: problems

Enhanced diffusion (cancellation exponent) requires global
knowledge of geometry of trajectories (very hard).

What is the generalization of the Ott-Du formula?
— Give growth rate as a function of velocity statistics.

Resulting magnetic field is a (multi)-fractal object. Describe in
terms of multi-fractal measures Dq, say.

— Give Dg’s as functions of velocity statistics.
What happens after kinematic regime?

— Magnetic field re-laminarises?
— How does non-linear saturation occurs?
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Saturation in mean field dynamos

Two-scale approach. Separate variables into large and small-
scale components. Consider the evolution of the large-scale field

7.{B)=N"{u” b)+Rm'N*{B)

In kinematic regime linearity of induction equation establishes a linear
relationship between mean field and mean emf

(u”b), =a(B;)- uTi(B)+-
Isotropic case

aamean induction

R&ddy diffusion
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Transport coefficients

* In kinematic regime a¥and 3¥hould be determined solely by Rm and the

statistics of u
e a)Xs a pseudo-scalar (tensor) e requires lack of reflectional symmetry

« Simple solutions of dynamo equation
B=B,(x)exp(st), N" B, =kB,, s=k(a-k )

with
k =a/

C

In large Rm situation adand R&hould have turbulent values. i.e. independent
of Rm

a » U, »ul, k.1=0(1)

Dynamo sets in at small, rather than large scales (bit of a problem)
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Saturation in large scale dynamos

In systems lacking reflectional symmetry mean induction effect (a-
effect) leads to growth of large-scale field

Observations show that in many astrophysical systems large-scale
field is in equipartition with velocity

This could easily be achieved if mean induction effect saturates

when
o> u

Suggesting a phenomenological non-linear behaviour of the mean
Induction term of the type

U

a »=——=
1+(B)" /u”

However there appear to be problems when Rm >>1.
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Nonlinear effects: 2D diffusion

In 2D induction equation becomes scalar transport equation

B=R"(Ae,), @ - R;’N?JA+uxNA=0
With suitable boundary conditions we have
.(A’)=- 2Rm™* (|NAf') = - 2Rm " (B?)

e Inorder to maintain “turbulent” behaviour as Rm ® ¥ gradients of A
must diverge

» Generation of small scale fluctuations increases magnetic field energy

(1o} =(eY R

e Reasonable energetic constraint <B2> =p?: gives estimate

_ ul _
~1+RmB2/u?’ B =KB)
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Effect on velocity field

* Assume diffusive behaviour of large scale component of A (D= )
— NK2
fi.(A)=DN"(A)

o With diffusivity given by (Taylor 1921)

. 1d,, 1
D_ZE X )»ZCL(O)

C, W) = O, {v(a t)v(at+5))expiws ds

250 T T T T 7 ! { 25 [ ]

I Longitudinal ] I Transverse ]

20 gy I £ o ]

! ARSI 4 L VRN J

I ',’.,’ = 15 . L7 ]

157 = 30 1 15F i -
3 / = 60 . ] o
(_)-' L = o0 : e
10/ 1 10 1 s
5 j £
[ [g8)
5} o c
: 5L 1 €
I , o
[ ~iTexas 4 L

O L= A e ) 0 r
0 2 4 6 0 2 4 6
frequency frequency

Turbulence develops a memory
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Back to aY

* Equivalent expression for a (Moffatt 1964)
1d &
A =m0 ° ?
6 dt( 7

« Kinematically some problems with convergence of integrals as Rm ® ¥

* Non-linearly is there an analogy between 2-D diffusion and 3-D a-effect?
— Phenomenological argument (Vainshtein & Cattaneo 1991)
— Closure argument (Kulsrud & Anderson 1992)
— Quasi-linear closure (Diamond & Gruzinov 1994 )
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Nonlinear effects

Most nonlinear treatments rely on two statements

— Geometrical (to maintain turbulent rate as Rm ® ¥ something must
diverge)
— Dynamical (divergence is energetically impossible)
Assume suitable boundaries

%(A B)=-2R(BxJ) (exact)
Stationary, uniform mean field
a(B) =-R:{bx) (exact)

From EDQNM, say (Pouquet, Frish & Leorat 1975), get dynamical
relationship

a=- (u><? : b><j) (extremely not-exact)
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Nonlinear effects

Combine to get saturation effects (as before)

— u —
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Non-linear saturation: problems

Final result is correct but irrelevant
— time dependence is neglected
— large scale gradients are neglected
— special boundary conditions (no flux of helicity) are assumed

e Derivation is wrong/suspect
— Assumptions about correlation time need justification
— Intermittency effects are neglected (possibly strong in 3D)
— last expression only valid for (moderate) Rm

o a-effect is not saturated in laboratory plasmas (rfp)

* If everything is correct, how do large-scale equipartition fields get
generated?
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Summary/Conclusion

 Dynamo theory does provide possible framework to explain origin of
magnetic fields in widely different astrophysical objects.

e At the momer
e Large Rm lin

Field deve _
Field devg Dynamos are sneakier

e Transition fr than you think.

Does inte
What is t
regime?

Is the a-e
effects?

Does the turbulence develop a long-term memory in 3-D?

Etc. etc. etc.

dynamical?
turated

out the -
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The end
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Some (computer) examples

Non-rotating
convectively
driven
dynamo

Quasi-
geostrophic

driven
dynamo
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