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Qutline

* Formation of nonlinear phase-space structures.

 Adiabatic evolution of the structures.

« Stability analysis of the structures.

« Mutual interaction between multiple structures.



Nonlinear Evolution of Waves due
to Weak Instabilities

« Resonant particles destabilize waves a plasma can
support.

« System is close to the linear instability threshold
where kinetic drive = background dissipation.

« Spatial structure of waves remains unchanged.

« Dominant nonlinearity is caused by interaction
with resonant particles
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Signature for Formation of Phase

SEace Structures (Theory)

N=V<Wn [Berk, Breizman, and Pekker, Plasma Phys. Rep. (1997)]
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ExEIosive Solution

Local flattening of the distribution
function produces large gradients
of the distribution function in the
y transient regions. The gradients feed
L the instability further.
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Formation of “Holes” and “Clumps”

Simulation: N. Petviashuvili

PHASE SPACE PLOTS OF PARTICLE DISTRIBUTION

“Hole”
“Clump”
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Frequency Sweeping of Nonlinear
Phase Space Structures

Background dissipation forces the frequency sweepi!
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Slow Evolution of the Structures

Slowly changing wave propertiesma{df ,ddat{,

g

Adiabatic invariants for description of the evolution of the trapped

particle distribution function
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+ equations for the mode phase and amplitude
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Self-consistent adiabatic analysis,
stable evolution of waves and particles
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Description of Adiabatic Evolution

Evolution of the mode’s normalized trapping freqcye Q In terms of
normalized frequency shift() IS governed by

1 ¢ J~Ql
Q, =1-=[dIQ(I) R (Q,!) :
Q3% 0<l<1
Q1) =3l € cost [E+ o ¥
T [maxd & [[E+cosé 2

O normalized frequency shift

Qb normalized trapping frequency
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Problems in Adiabatic Description

1
Differentiating qQ, :1—%jde(l)fT (Q,1) , one obtains:

dQ _QH-(Q,Q,)
dQ, 1-Q,

1¢ .,
H(@.9,) =14 £ o @iQ()

Frequency termination point:
H, -0
Bifurcation point:

Hy -0 Q, »1
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Four Regimes of Solutions

«— trapped particles— Initial trapped particle distribution function:
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Self-Consistent Perturbative
Analysis

Perturbed equations for the mode’s phase and amplide
and

Linearized Vlasov equation
DSt _ ;00 OF(E) _ aF(E)(D_ajOij D_0_ ;0 _oH 0
Dt o¢ OE OE \ Dt ot Dt ot o0& 0& o8

Perturbation of the distribution function:

Of _@{@(5 t)- j at'— 5¢(§ t )} Integration along unperturbed

trajectories
@(f,t) ~ —AACOSG )—AaAb smf | [Eremin, Berk, Phys. Plasmas (2004)]
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Dispersion Relation for the
Perturbed Eigenmodes
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Instability Analysis

VD, (-¥°) =

-D, | y=-iw

If ——>0then Ihsis positive, VD,
oE P
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Unstable root guaranteed if D, <O

After a great deal of algebraic manipulations, weihd that D, :H—2T

>0
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Instability Analysis

A% Aw<1 yZDZ(—yz) :—D1 y=E—w
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If a—E>Othen Ihs is positive, ¥°D,(- )2[31/2] dEaG(E)T(E)Z >0

¥D, f)mmmzﬁj dEaG(E)T(E)Z(<cos€) ) =D> (

Unstable root guaranteed if D, <O

After a great deal of algebraic manipulations, weihd that D, =—-

— Adiabatic theory “knows” about onset of
the instability!
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Numerical Results: Dynamic Run

Comparison of predicted evolution
with particle simulation for a case
when a frequency termination point
-l (\M | Is reached.
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Self-Consistent Dynamics of
Multiple Structures

Filtered Amplitude of
the Primary Downshifted Mode

Filtered Amplitude of
the Primary Upshifted Mode
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Mechanisms for Amplitude
Reduction

{Regular Dynamicsi-_contribution from the trapped region of the neigtirtg

mode
[Chaotlc Erosion of the Separatrlx}\ stochastic instability frequ_e ney
sweeping
2p Explain observed amplitude!
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Summary

- Nonlinear phase space structures occur spontaneously in a
resonant system with damping, close to instability threshold.

* The adiabatic analysis very accurately describes the frequency
sweeping when the mode is stable.

* The self-consistent adiabatic solution may evolve to points,
where the adiabatic analysis falls.

e Linear perturbative analysis demonstrates that these
points are exactly where an instabillity is triggered.



Summary (cont.)

* Nonlinear response interesting, needs further study.

* Generation of subsidiary structures changes mode
amplitude; analytic prediction successfully made.

» Theoretical arguments considered here should be important
In understanding the experimental data.



