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Abstract

The axisymmetric magnetically levitated dipole guarantees omnigeneous particle drifts and is the
only high-beta toroidal magnetic configuration that satisfies the Palumbo condition: the divergence
of the perpendicular plasma current vanishes. The absence of parallel currents in a dipole-confined
plasma is significant. Many tokamak instabilities, e.g. kink, tearing, ballooning, and drift modes,
are not found in a plasma torus confined by a magnetic dipole [1]. Instead, interchange and entropy
modes dominate plasma dynamics, and plasma profiles determine the level of turbulence.
Turbulent transport causes centrally-peaked profiles and self-organization, as the plasma
approaches a state of minimum entropy production [2,3]. These unique confinement and stability
properties create a new paradigm of toroidal magnetic confinement and also link laboratory plasma
confinement studies to the physics of planetary magnetospheres. Interchange mixing also appears
in planetary magnetospheres driven by solar wind, but ionospheric currents regulate interchange
motion in the magnetosphere [4]. The absence of field-aligned currents in the laboratory causes
ion-inertial currents to set the global structure of low-frequency fluctuations. Measurements of
electrostatic interchange and entropy modes in dipole-confined plasma show similar global
structures when driven either by energetic trapped electrons, sonic plasma rotation, or warm
electron pressure. Recent experiments with localized current-injection feedback and with pellet
injection show variations with mode frequency and amplitude that are consistent with linear and
quasilinear models of interchange and entropy modes computed from the flux-tube averaged
gyrofluid equations [5].
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Two Laboratory Magnetospheres:
Plasma Experiments without Field-Aligned Currents

LDX:
High Beta Levitation & Turbulent Pinch
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Vasyliunas, “Mathematical Models of Magnetospheric Convection and Its Coupling to the lonosphere,” in Particles
and Fields in the Magnetosphere, edited by B.M. McCormac (D. Reidel, Norwell, MA, 1970), pp. 60-71.
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Planetary Magnetospheres

Figure 3. Dynamo forces, auroral current system,  Figure 4. High-latitude plasma circulation system at
and resulting convection under frictional control by ~ times of an active magnetospheric dynamo (e.g.
the ionosphere, after Bostrom (1964). during substorms).

G. Haerendel, “Outstanding issues in understanding the dynamics of the inner plasma sheet and
ring current during Storms and Substorms,” Advances in Space Research, 25, 2379 (2000).
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Measured lonospheric Currents
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Fig. 7. Electric field vectors (rotated 90° counter clockwise) cal-
culated from SuperDARN data averaged over 03:30-04:30 UT, 1

Fig. 6. Birkeland currents, J; derived from the data in Fig. 4 November, 2001. The electric potential contours, DMSP and Oer-

according to Eq. (12) for 03:30-04:30 UT, 1 November, 2001. The sted tracks and the sunlight terminator are overlayed. The extremes
DMSP and Oersted tracks are reproduced while the thicker, grey in potential are located at the blue (-ve) and red (+ve) dots. The
solid line from 06:00 to 18:00 MLT indicates the sunlight terminator electric field vectors are bold at locations where radar returns were
boundary in the jonosphere. received.

Green, et al., “Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data,”
Annales Geophysicae 24, 941 (2006).
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Measured Flute-Type Modes in CTX
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Convective Structures are Dynamic
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With Te >> T; (CTX and LDX) modes (usually) propagate in electron drift direction

Fast MHD Interchange in an Axisymmetric Magnetic Dipole
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Linearized dimensionless MHD dynamics
Depends only upon p” and profiles, h, and hg

e Equatorial radius, Lo h! = w’ —wy
o Flux, wo = BoLd? (y = wlyo) hlg = w; — YWy
o Gyroradius, p* = Cs/ weilo<<1 ON  dh, O
o Potential, MiCs?/e ot + dy Op -
o Pressure, MiCs? oP ,dhg 8613
o Time, 1/(wei p*?) ot +y” dy 8g0
.
o Loy (0 )+ + g =0

When h!, ~ k], ~ 0, then (N, P, ®) — 0
hn(y) = N(¢)/N () and hy(y) = P()U” /P (1)U (1)’
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Local MHD Interchange Modes
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Example Eigenmodes: Unstable MHD Convection
25 m A w, > Ywq, unstable
w, < wgq, stable



Adding magnetic drift physics uncovers
Entropy and Drift-Interchange Modes

¢ Near marginal stability, diamagnetic flows and magnetic drifts modify
interchange dynamics in a significant and fundamental way...

¢ Flute-type entropy modes become unstable unless n ~ 2/3

o Density and pressure drift perturbations exist even for stationary profiles
(ile. h'n~hyg~0)

¢ Entropy and drift-interchange instabilities propagate toroidally

¢ Bounce-averaged drift-kinetics applies (relatively simple dynamics)

e See...
» Kesner, Phys Plasmas, 7, 3887 (2000)
» Beer and Hammett, Phys Plasmas, 3, 4018 (1996).
» Ricci, Rogers, Dorland, and Barnes, Phys Plasmas 13, 062102 (2006)
» Kobayashi, Rogers, and Dorland, Phys Rev Lett, 105, 235004 (2010)

Entropy & Drift-Interchange Modes

(For CTX and LDX with Te >> Tj)
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Local Entropy Drift-Interchange Modes
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Comparing Low-Frequency Interchange-Drift Stability

(expressed with the usual tokamak normalized gradients)
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X. Garbet / C. R. Physique 7 (2006) 573-583 J. Kesner, Phys Plasmas 7, 3837 (2000)
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Stationary Drift Waves in a Dipole with
Warm Electrons

When h!, ~ h; ~ 0, then two stable drift waves and a damped convective cell.

W, = 1V with N ~ P, ~ 0
Wm = mwq (7 + V(7 —1)) “fast” drift wave
Wm = mwq (v —V/y(y— 1)) “slow” drift wave

“Slow” and “fast” drift waves correspond to flux tubes with locally
“cooler” or “warmer” electrons relative to average, N/Pe.

When h; ~ 0, then the “fast” drift mode becomes an unstable entropy mode
when h!, > 0.54m? p? (i.e. n > 2/3) and the “slow” drift mode becomes unstable
whenever h], < —4.8m? p? (i.e. 1< 2/3) .
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Proflles In CTX and LDX
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CTX and LDX have similar low-frequency flute-type dynamics
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Example Drift-Interchange Eigenm
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PRL 105, 235004 (2010) PHYSICAL REVIEW LETTERS 3 DECEMBER 2010

Particle Pinch in Gyrokinetic Simulations of Closed Field-Line Systems
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Growth Rate vs kpg
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Peak growth rates for entropy mode have short wavelengths
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Turbulent Intensity is Observed to Peak at Long
Wavelengths (Inverse Mode-Mode Cascade)

(a) Edge Floating Potential Fluctuations (b) Inner Interferometer Fluctuations
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Grierson, M. Worstell, and M. Mauel, Phys Plasmas 16, 055902 (2009).
Boxer, et al., Nature Phys 6, 207 (2010).
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Gyrofluid Quasilinear Theory

Quasilinear Resonance Functions for Interchange Transport
1.5
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_ vy Figure 2: Plot of the quaslinear resonance functions in Eqs. 28 and 29, S{r(w,,)}, for

G et P U weakly growing interchange modes as a function of the real mode frequency, w/wy. The
quasilinear diffusion coefficients are the summation, over all modes, of the product of the
mode intensity and the resonance functions. The blue curve is 7,; the red curve is 7,; and
the gold curve is the cross-diffusion, 7,,,.

N = b (i) 20 7, ) 2D
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Quasilinear Theory Description of Particle and
Pressure Pinches includes Cross-Gradient Flux

Using these linear forms for the perturbed density and pressure, the quasilinear trans-
port equations are

W = e (30 2 4 e B ) 28)
e RS ANl c/ BN DN
By pint (S Gl ostuenGl) e

Interchange transport fluxes have cross-terms that depend upon the frequency spectrum
of the interchange turbulence. Peaked or hollow entropy density, 0(G)/dy # 0, can drive
diffusion in flux-tube particle number, and peaked or hallow density, O(N)/0y # 0, can
drive diffusion in plasma pressure. The magnitude of the quasilinear fluxes depend upon
the frequency spectrum. For a uniform turbulence spectrum, extending beyond a few
times wy, the cross-diffusion fluxes vanish.

G = PU”
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Summary and Applications

Global flux-tube averaged gryo-fluid description of flute-type instabilities describes drift-
interchange and entropy modes

Long wavelength eigenmodes and real frequencies like observations in CTX and LDX
¢ Quasilinear theory describes up-gradient turbulent pinches

e Linear theory can model local current-injection feedback (Roberts, PoP 2015)

e Lipelletinjection reduces n — 0 and reverses toroidal propagation of fluctuations

Need to include bounce-averaged drift-resonances, like Maslovsky, Levitt, and Mauel,
Phys Rev Lett 90, 185001 (2003) Beer and Hammett, Phys Plasmas 3, 4018 (1996)

Mode-mode and 2D interchange cascade may explain the discrepancy between
observations dominated with low-m eigenmodes and linear high-m eigenmodes with
large growth rates.

Flux-tube averaging makes possible “whole-plasma” nonlinear turbulence simulations.
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Local Regulation of Interchange Turbulence with

Current-Collection Feedback
(Roberts, Phys. Plasmas, 2015)
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Local Regulation of Interchange Turbulence with

Current-Collection Feedback
(Roberts, Phys. Plasmas, 2015)
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SPellet Fueling D

(2) Li Pellet




Li Pellet Injection Increases Density (x10) and

Drivesn — 0
(Garnier, DPP 2014 and to be submitted to PPCF, 2015)
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Li Pellet Injection Increases Density (x10) and

Drivesn — 0
(Garnier, DPP 2014 and to be submitted to PPCF, 2015)
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Toroidal Confinement without Toroidal Field may Speed Fusion

Development Using Much Smaller Superconducting Coils
(Qor ~ 10 Magnet Systems Compared at Same Scale)

Kesner, et al., Nuclear Fusion 44, 193 (2004)

Toroidal and Poloidal Magnets |

Small Levitated Magnet |

<=
Plasma Volume = 837 m3 Plasma Volume = 42,000 m3
Pus=410 MW Wo=11GJ Wo=51GJ k=164 MA Pius =39 MW W, =0.06GJ Wo=16GJ ls=25MA
(a) Conventional Fusion Experiment (Gain = 10) (b) Dipole Fusion Experiment (Gain = 10)
Gyro-Bohm Scaling Bohm Scaling

30-fold size/energy reduction (!)
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