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Conclusions:

* 3D global 2-fluid simulations show good agree-
ment with data from LAPD in the low-bias pa-
rameter regime explored so far.

* KH turbulence at relatively large scales is the dom-

inant driver of cross-field transport in the low-bias
simulations.

* Biased simulations are currently under study.

The work presented here builds upon an initial numerical study [Rogers and Ricci, Phys. Rev. Lett., 104, 2010]
of LAPD [Gekelman et al., Rev. Sci. Instrum., 62, 1991] using the Global Braginskii Solver code (GBS) [Ricci et.
al., Plasma Phys. Control. Fusion, 54, 2012].
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Large Plasma Device (LAPD)

Dartmouth

LAPD Primer for a Nominal Plasma

® Plasma 17m in length, 30 cm in radius ifm
® Machine diameter ~ 1m
® n~2x102em™3
® Pulsed at 1Hz for ~ 10 ms
® Axial magnetic field ~ 1kG
® T.~6eVand T; ~ 0.5eV
® |on sound gyroradius, ps ~ 1.4 cm
® Plasma 3 ~ 10~4
Discharge Circuit
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Electrical Breaks
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T.A. Carter and J.E. Maggs, Physics of Plasmas, 16 (2009)
http://plasma.physics.ucla.edu/pages/gallery.html (BaPSF)
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Dartmouth

Standard Bohm Sheath B.C.'s at the End Walls

V)i = £¢s (1)

V||e = =*c eXp([/\ - e{¢p|asma _M(} Te]) (2)
s =+ Teo/mi; N=In/m;/(2rme) ~ 3 (3)

with

The B.C.'s on the outflows of ions and electrons to the end walls
lead to an approximate global balance V|; ~ V), or

¢plasma ~ A Te (4)
~ [ 1L

Relaxation due
to turbulence

Dustin M. Fisher Sherwood 2015 Modeling the LAPD 3/21



Model Equations and Numerical Setup

The code evolves a set of electrostatic two-fluid drift-reduced Braginskii
equations assuming T; < Te:
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@
Evolution of Turbulence and Transport 3 - Dartmouth

. Starting top_hat 05 t = 0.25 ms t = 0.40 ms 05t
shaped density/’ 0.48
source. B 0.42

-

e Onset of drift waves 0.36
with kgps ~ 0.5, 0.30
k||Leq ~ 1. 0.24

e Onset of KH from 0.18
sheared flow with 0.12
k|| ~ 0. 0.06

e Steady-state region 5 ' 0.00

—0.5 0.0 0.5—0.5 0.0 0.5
where turbulence has
x (m) x (m)

reached saturation. . )
Plots show mid-plane cuts perpendicular to B.

Dustin M. Fisher Sherwood 2015 Modeling the LAPD 5/21



@
Evolution of Turbulence and Transport 3 - Dartmouth
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Evolution of Turbulence and Transport Dartmouth

Fluctuations Predominantly k; =0

TOp Sta rting - Density at t = 0.04 ms .
. 5 0.07
exponential e 8;3(5) 008
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dependence. 8 =6 -4-20
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Density t = 3.44 ms

Bottom Profile modified
by turbulence.
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Plots show mid-plane cuts parallel to B.
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Evolution of Turbulence and Transport Dartmouth

Fluctuations Predominantly k; =0
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Plots show mid-plane cuts parallel to B.
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Evolution of Turbulence and Transport

Low Bias with Intrinsic Rotation due to Sheath B.C.'s
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Evolution of Turbulence and Transport

Amplitude (V)

Potential profile that forms self-consistently from the temperature profile and

the boundary sheath conditions. Here A = 3.

Modeling the LAPD
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Evolution of Turbulence and Transport
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Dartmouth

CCD Camera Comparisons

y-pixel

Dustin M. Fisher Sherwood 2015

Luminosity data from a Phantom camera looking down the length
of the LAPD.
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e Presence of density holes inside the cathode edge and blobs outside.

e Scale size of visible density fluctuations comparable to simulations.
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LAPD Comparisons
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data from LAPD using a periscopic GBS zoomed to the same window size
mirror arrangement. as the CCD data.
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LAPD Comparisons
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e Peak fluctuations occur where the shear flow is greatest.

e Theorized vj, leads to modest stabilizing effect on KH modes.
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LAPD Comparisons
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e Exponential spectra consistent with intermittent turbulent structures
(Pace, Shi, Maggs, Morales, and Carter, Phys. Rev. Lett., 101, 2008).
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LAPD Comparisons
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Probability distribution function of density fluctuations averaged over the
interval 22cm < r < 28cm.
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LAPD Comparisons

Intermittent turbulence can spotted by its effect on the third standardized

moment of the distribution function know as the skewness:

1 Z sn3 '
= n
Skewness = —N=N— 10 s
1 o 10 e GBS
(N ZN ) —-— GBS with v;,

1L n Profile at t=27.4

Skewness of dn
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Negative skewness indicates a left tail in the PDF which is linked to the
presence of density holes. Positive skewness indicates the PDF is skewed to the

right by a density tail which may signal the presence of density blobs.
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LAPD Comparisons

2D cross-field correlation function of the density fluctuations referenced to a

1.0

point near the cathode. edge
0.10
0.05 g ] 0.5
E 000 0.0
0.5
—0.05 F g 0.5
LAPD GBS
—0.10 LSl Y — I
0.21 0.24 0.27 0.30  0.21 0.24 0.27 0.30
X (m) X (m)

A solid line marks the correlation at 0.5 below the maximum value to give a

correlation length of ~ 5.5cm consistent with KH scale lengths.
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LAPD Comparisons
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e Data inside cathode edge unreliable due to fast electrons.

e Theorized v;, value drops transport by a factor of 2.
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LAPD Comparisons

Biasing in LAPD

Limiter
(annular, biasable) End mesh

—F X @

Bias Circuit
i Capacitor Bank + IGBT Switch
020

[Schaffner et. al., Phys. Plasmas, 20, 2013]

® Original biasing of LAPD was done
by biasing the chamber walls relative
to the cathode [Maggs, Carter, and
Taylor, Phys. Plasmas, 14, 2007].

® Recently, a biasable limiter was used
for continuous variation of the shear
flow by David Schaffner and
colleagues.
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LAPD Comparisons

Increasing the Shear Flow
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Dartmouth

Reducing/Nulling/Reversing the Shear Flow

Density with
Decreased Shear Flow

Density with
0 L, Increased Shear Flow

Current work focuses on
completely nulling the
shear flow to explore the
effects drift wave modes
have on turbulence and
transport without KH
from shear flow. 25

X (ps0)
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Conclusions

Conclusions

® Qverall good agreement between the simulations and LAPD data.
® Sheath boundary conditions lead to ¢piasma ~ ATe + Pwall-

® Large shear flow destabilizes KH which appears to be the dominant driver
of turbulence and transport in the unbiased case. Pressure gradients also
destabilize small scale drift waves.

® |on-neutral collisions have a modest stabilizing effect on the KH modes,
and reduce the radial transport by approximately a factor of two for the
theoretically predicated ion-neutral collision frequency.

® Biasing can increase, null, or reverse shear flow in the plasma. The
physics of these biased runs are currently being studied.

Our next step is to null the shear flow to study driftwaves in the absence of KH

driven shear flows.
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Vorticity source, s¢,

Dartmouth

To add a source to the vorticity equation, one assumes a small
electron source term representing the primary electronics coming
from the hot cathode.

8[7,‘

ot +V. [n (VE><B+Vdi+Vpol+VHib)] =S5 (10)
0
ar;e +V- [n (VEXB + Vge + V||eb)] =Se + Se,f (11)

Subtracting (11) from (10) and assuming quasi-neutrality gives a
current continuity equation with a small source term that can be
physically thought of as relating to the discharge current each time
the plasma is pulsed.

V- [n(vai = Vae)] + V - (nvpol) + 882 <J!> ==5r (12)
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Vorticity source, s¢,

Dartmouth

Using the Boussinesq approximation and neglecting magnetic
curvature terms

nc d
V- (nVpo1) = Bt (Vi) (13)

the vorticity equation with w = Vigb can be written

dw miw?, a (]
- = V- (n(vgi —Vde))‘f‘g <e)} + S, (14)
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Cross-field ion-neutral collisions via a Petersen conductivity term

The Pedersen conductivity can be written as

1+ k)12
01 = 0g ( 2 g = 5 (15)
(1 + ,{/) Ve + wce
where
2
ne
= 16
a0 Mele ( )
WeeWci
Velin ( )
Ve = Ven + Vei (18)

and the collision frequencies for the electrons with neutrals, vep,
the electrons with ions, ve;, and the ions with neutrals, v;, are all
known from theory or experiment.
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Cross-field ion-neutral collisions via a Petersen conductivity term Dartmouth

In the limit where vj,/w¢ < 1 (valid for LAPD estimates of
Vin/wei ~ 2 x 1073) the Pedersen conductivity term can be

written as
ne? vj,

o1 = —— (19)

mi we;

Ohm'’s law dictates that J;, = —01V ¢ so that the perpendicular
component of current in the current continuity equation becomes:

V-J, =V (-01V9) (20)

2.,
- - <"e "2> w (21)
mi We;

where it's assumed that o7 is not spatially dependent as estimated
for LAPD [Maggs, Carter, and Taylor, Phys. Plasmas, 14, 2007].

Dustin M. Fisher Sherwood 2015 Modeling the LAPD 21 /21



fed for-neutrl collsons v 2 Petaren conductiiy term Dartmouth

To prevent a buildup of charge in the plasma and maintain
quasi-neutrality
J||cathode = J||w1 + JHW2 (22)

where Jjjcathode IS the discharge current into the source and Jj1,w2
are the currents out of the near and far walls. Balancing these
terms, Eq. (1) and Eq. (2) can be written

JAEM 2— exp< 7(¢se ¢w1)) (23)

QNseCse
X <1 + exp <;e (dw2 — <Z>W1))>

where nge is the plasma density at the sheath edge, cee is the
sound speed at the sheath edge at which ions are assumed to
enter, ¢se is the plasma potential at the sheath edge, and ¢,,1 and
¢w2 are the near and far wall potentials.
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fed for-neutrl collsons v 2 Petaren conductiiy term Dartmouth

When ¢,,1=0¢,2 the exponential factor on the far RHS goes to
unity. When ¢,,1 > ¢y2 the exponential becomes negligible and
vanishes. Solving for the plasma potential at the sheath edge one

can show
Te 1 A
¢se—¢wl—e{/\—|n [f (2—J>]} (24)

where f = 1 when ¢,1 > ¢y and f = 2 when ¢,1 = d,» and

J < 0 since it's modeling an electron beam. Thus a vorticity
source, S, which acts as a source of current in the current
continuity equation, also effectively shifts the Bohm sheath factor
to a lower value when setting the plasma potential.
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fed for-neutrl collsons v 2 Petaren conductiiy term Dartmouth

A modest correction to this calculated potential can likewise be
made with the inclusion of ion-neutral collisions. Thus in solving
the vorticity equation for a perturbed potential ¢ = ¢g + ¢1, with
$1 < o,

ep=NT, (25)
where

N =A-In(G) (26)
and

G ~ (1 + fs‘: - i”gvigso) . (27)
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