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Overview
In axisymmetric tokamaks the leading order “parallel” viscosity terms in the 
toroidal angular momentum damping term vanish identically on flux surface 
averaging, leaving the gyroviscous terms as the largest surviving viscous drag 
[3]. Since the gyroviscous terms depend on poloidal asymmetries, it is 
important to represent the poloidal variations in the plasma geometry 
accurately. In the interests of improving this poloidal representation, this 
analysis attempts to:
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3. Solve a system of equations developed from the 

Fourier moments of the fluid equations for the poloidal 

asymmetries in plasma parameters

1. Develop an accurate method to analytically fit the 

poloidal and radial dependence of flux surfaces from 

EFIT data

2. Develop an orthogonal system of basis vectors and 

scale factors which allow for an accurate calculation of 

poloidal magnetic field
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Fluid moments of the Boltzmann Transport Equation

• Continuity

• Momentum Balance
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Viscosity and Friction

• The viscous stress tensor in a magnetized plasma can be decomposed into parallel, perpendicular, 
and gyroviscous components [1,2]
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• Each component of the stress tensor has an associated viscosity coefficient:
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• The interspecies frictional force is represented using a simple Lorentz model, with a collision 
frequency given by: [3]
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Methods of analytically representing the 
variations in flux surface locations
• Extended Miller – Miller et. al. [5] gives the following expressions for major radius (R) and vertical 

displacement (Z) of points on flux surfaces, parameterized by constant ρ (normalized minor radius on 
outboard midplane). We extend this application to include separate upper and lower hemisphere 
radial profiles of elongations           and triangularities :

• r-Fourier - If a Fourier expansion is used to describe the poloidal dependence of the minor radius*, 
the poloidal dependence of R and Z can be written as:
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* Note that a 0th order expansion in r-Fourier results in the circular-model plasma representation
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General Plasma Coordinate System

• The definitions for R and Z in both of the coordinate systems analyzed in this analysis can be used 
to derive the general basis vectors and scale factors, in terms of radial (ρ) and poloidal (θ) 
gradients. The poloidal basis vectors are parallel to flux-surfaces.

• In a general plasma coordinate system, the radial and poloidal basis vectors are not necessarily 
orthogonal. 
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Orthogonalized Plasma Coordinate System

• In the interest of simplifying vector calculations in the fluid equations, we can develop 
“orthogonalized” coordinate systems, by applying a method similar to a Grahm-Schmidt 
orthogonalization to the metric tensor. 

• Effectively, we define a new radial basis vector which is perpendicular to both the toroidal and 
poloidal basis vectors, and is scaled to preserve the differential volume                                       
from the general coordinate systems
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Method for fitting flux surfaces from EFIT data
• The location of flux-surfaces is determined for Shot # 149468 from a 65x65 (R,Z) mesh of EFIT data for 

the 2D poloidal magnetic flux (ψ) distribution over a poloidal plasma cross-section. 
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• The location of the plasma center is determined by the 
minimum ψ value, and the value of maximum ψ is 
determined by the location of the last-closed-flux surface.

• Flux-surface contours can be interpolated for 50 
intermediate values of ψ. The central Z0 location for each 
of these surfaces is defined by the average vertical 
position of the locations of maximum and minimum major 
radii on the outboard and inboard midplanes. The R0 
location for each flux-surface is determined by the 
midpoint between flux-surface boundaries at this point.

• The midplane minor radii for all flux surfaces is set by 
half the width of the flux-surface contours at the central 
(R0,Z0) location. Using the resulting relationship between 
flux surface ψ values and normalized midplane minor 
radii (ρ), we can interpolate to find 200 (R,Z) locations on 
flux-surface contours for each of 50 evenly-spaced ρ
values, 0<ρ≤1.

Figure – (R,Z) mesh of EFIT  data for shot 

#149468. The location of the LCFS is shown in 

blue
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This parameterization requires 3 radial 

profiles, and radial gradients:

A 0th order Fourier expansion of the 

poloidal dependence of minor radius 

reduces to the circular-plasma model, with 

Shafranov shift:

0th order r-Fourier (Circular Model) flux surface fitting

General and orthogonalized basis vector calculations for r-Fourier
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Left Plot:

Interpolated Fourier (IF) – Independent 

poloidal interpolation of Fourier fit coefficients 

on each flux surface (blue)

General Fitted Fourier* (GFF) –
General, non-orthogonal basis vectors

Right Plot:

Fitted Fourier (FF) – Reconstruction from 4th

order, piecewise polynomial fits of the radial 

dependence of Fourier coefficients

Orthogonalized Fitted Fourier* (OFF) 
– Orthogonalized basis vectors

* For this simple circular model, 

the general and orthogonalized

metric tensors are equivalent
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This parameterization requires 3 + 2n = 

15 radial profiles, and radial gradients:
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Reconstruction of the plasma area from a 

6th order Fourier fit of the poloidal 

dependence of EFIT minor radius for flux 

surfaces (red), as compared to the original 

EFIT plasma area (grey). 

6th order r-Fourier model flux surface location fitting

General and orthogonalized basis vector calculations for r-Fourier

Right Plot:

Fitted Fourier (FF) – Reconstruction from 

6th order, piecewise polynomial fits of the radial 

dependence of Fourier coefficients

Orthogonalized Fitted Fourier (OFF) 
– Orthogonalized basis vectors

Left Plot:

Interpolated Fourier (IF) – Independent 

poloidal interpolation of Fourier fit coefficients on 

each flux surface (blue)

General Fitted Fourier (GFF) –
General, non-orthogonal basis vectors
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Extended* Miller model flux-surface location fitting
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This parameterization requires 6 radial 

profiles, and radial gradients:
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Reconstruction of the poloidally-interpolated 

(Left) and fitted (Right) extended-Miller plasma 

areas (blue), as compared to the original EFIT 

plasma area (grey).

General and orthogonalized basis vector calculations

Right Figure:

Fitted Miller (FM) – Reconstruction from 

4th order, piecewise polynomial fits of the radial 

dependence of Miller parameters

Orthogonalized Fitted Miller (OFM) 
– orthogonalized basis vectors

Left Figure:

Interpolated Miller (IM) –
Independent poloidal interpolation of Miller 

parameters on flux surfaces (blue)

General Fitted Miller (GFM) –

general, non-orthogonal basis vectors

* Separate radial elongation (κ) and 

triangularity (δ) profiles are used to 

fit the flux surfaces in the upper and 

lower hemispheres

       

         

0

0

, cos ,

, sin

R R r a

Z Z r a

     

     

    

 



The error in flux-surface interpolation and fitting methods, 
as compared to the original EFIT data
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In this analysis, we have chosen to use the 

Fitted extended-Miller (FM) plasma 

model to describe the flux surface locations, 

and the orthogonalization method to 

determine the basis vectors in this system. 

This model gives an analytic representation 

for both poloidal and radial variations in 

flux-surface location, and an analytic 

representation for basis vectors. It will be 

referred to as the Orthogonalized Miller 

(OM) model

Error Calculation [6]:
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The Fitted extended-Miller model 

matches the EFIT flux surface with a 

relatively high accuracy (within 1% for 

rho<0.98), while also requiring ~ half as 

many radial profiles of fitting-coefficients

as the r-Fourier model (6 vs 15)



The poloidal magnetic field is directly related to the plasma 
coordinates by spatial gradients of enclosed magnetic flux (ψ)

• The poloidal magnetic flux, 
magnetic field, and magnetic 
vector potential are related by [6]:

• (1) can be used to relate the 
poloidal magnetic field to R and 
Z gradients of ψ[R,Z]. Spline 
interpolations of the EFIT data 
can  be used to calculate these 
gradients.

• Following the same procedure, 
the poloidal field in terms of the 
flux-surface OM fits can be given 
in terms of only the radial 
gradient of ψ[ρ, θ], since the 
poloidal gradient vanishes:
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Comparison of EFIT and OM calculations of 
poloidal magnetic field

15

- The poloidal magnetic field directly calculated from the raw EFIT (R,Z) data using (2) is shown 

as the black mesh. The same data, interpolated onto flux-surfaces, is shown in red. 

- The results of (3), at the Orthogonalized Fitted Miller (OM, or OFM) coordinate system 

locations, using gradients in the direction of the OM basis vectors, is shown in green



The poloidal dependence of plasma properties can be 
represented by low-order Fourier expansions
• The poloidal dependence of the plasma density, electric potential, and components of the velocity 

can be modeled using 1st order Fourier expansions. These expansions express the poloidally-
dependent quantity in terms of the “average” quantity     , and sine and cosine asymmetries O(r/R)

• For shot 149468, radial measurements of deuterium and carbon rotation velocities are available, 
along with density and temperature calculations. 

• Sine and cosine moments of the plasma fluid equations can be used to formulate a system of 
equations to solve for the poloidal asymmetries

• The moments of the continuity equation are used to determine the density asymmetries (4 
equations), the poloidal momentum balance moments used for the asymmetries in poloidal velocity 
(4 equations), and the toroidal angular momentum balance moments are applied to find the 
asymmetries in toroidal velocity (4 equations). Charge neutrality, coupled with the moments of the 
poloidal momentum balance for electron species, is used to relate the density asymmetries to the 
asymmetries in electric potential. 16
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The flux-surface-averages of the Fourier moments of the continuity and 
momentum balance equations can be formulated using OM coordinate 
scale factors[7,8]

• Continuity
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• Radial force balance

• Poloidal force balance

• Toroidal angular momentum balance
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Calculation of poloidal asymmetries of plasma properties
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• A direct-substitution method, 
formulated using 
Mathematica and ported to 
Fortran for execution, can be 
used to solve the coupled set 
of 14 nonlinear equations for 
the asymmetries in plasma 
parameters at 50 radial 
meshes. 

• The resulting radial profiles 
can be used with the 
experimental mean-values of 
plasma parameters to 
reconstruct the poloidal 
variations of plasma density, 
velocity, and electric field 
across a plasma cross-section.

Figure – The calculated radial profiles of sine and cosine 

asymmetries for Shot# 149468, t=1900.5 ms



Calculations of poloidally asymmetric density and toroidal 
velocity distributions
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Left Figure – Carbon toroidal velocity, accounting 

for the calculated poloidal asymmetries
Right Figure – Carbon density, accounting 

for the calculated poloidal asymmetries



Conclusions

• Use a higher-order Fourier expansion to represent the poloidal asymmetries

• Apply the r-Fourier method to the fluid calculations as an alternative to the Miller model. This should 
allow for analytic calculations of the flux-surface-averages, and allow for an analysis of how much 
error is due to low-order Fourier expansions

• Consider the effects of toroidal asymmetries on toroidal drag, and compare with experiment
20

• The agreement of the traditional Miller plasma model with EFIT predictions for flux-surface locations can be 
significantly improved if its fit-parameters are evaluated separately between the upper/lower hemispheres. The 
accuracy of the resulting extended-Miller geometric model is comparable to 6th order Fourier expansions of minor 
radius, with errors less than 0.5% for ρ<0.9, while requiring half the number of fitting coefficients.

Future work

• Poloidal magnetic fields calculated in orthogonalized forms of general fitted non-orthogonal geometric models, such 
as the extended-Miller, agree with traditional Cartesian coordinate calculations of the magnetic field from EFIT data to 
within 5% for ρ<0.8.

• Poloidal variations from experimental plasma densities, velocities, and electric potential can be calculated by solving 
Fourier sine and cosine moments of the plasma fluid equations for poloidal asymmetries in orthogonalized extended 
Miller geometry
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This parameterization requires 4n + 2 = 18 radial profiles, and radial gradients:
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Reconstruction of the plasma area from two 

seperate 4th order Fourier fits of the poloidal 

dependence of EFIT major radius R and 

vertical displacement Z (blue), as compared 

to the original EFIT plasma area (grey). 

Left Plot:

Interpolated Fourier RZ (IFRZ) –

Independent poloidal interpolation of Fourier 

fit coefficients on each flux surface (red)

General Fitted Fourier (GFFRZ) – General, 

non-orthogonal basis vectors

Right Plot:

Fitted Fourier RZ (FFRZ) – reconstruction 

from 4th order, piecewise polynomial fits of 

the radial dependence of Fourier fit 

coefficients

Orthogonalized Fitted Fourier (OFFRZ) –

orthogonalized basis vectors

Extra - RZ-Fourier model flux surface location interpolation and 
fitting, and basis vector calculations



Extra - Formulating the Toroidal Angular 
Momentum Balance in terms of drag frequencies

• The toroidal angular momentum balance can be written in terms of a drag frequency, which describes 
all physical processes contributing to toroidal angular momentum which are not well understood:
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• In the center of the plasma, where charge-exchange effects are small, the drag frequency is dependent on 
the inertial and gyroviscous effects. This drag frequency can be used with (4) to predict a toroidal 
velocity, consistent with the 0th moment of the toroidal angular momentum balance 
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• Work is ongoing to determine the effects that the calculations of poloidal asymmetries will 
have on the values of             and   𝜈𝑑𝜙𝑖
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Extra – Comparison of inferred and 
calculated drag frequencies

• The inferred drag 
frequencies are negative, 
opposite the direction of 
the calculated drag. If 
true, this indicates a 
much larger, unmodeled
toroidal drag, possibly 
due to parallel viscosity 
due to toroidal 
axisymmetries

23

0 0.2 0.4 0.6
-50

0

50

100

150

200




d

ra
g

*
 (

1
/s

)
 

 

(
d,deut

*
)
infer

(
d,deut

*
)
calc

0 0.2 0.4 0.6
-50

0

50



 

 

(
d,carb

*
)
infer

(
d,carb

*
)
calc



Extra – Velocity predictions using calculated 
drag frequencies

• The toroidal angular 
momentum balance 
equations for deuterium 
and carbon can be 
reformatted to calculate 
toroidal velocity in terms 
of the drag frequencies 
calculated from 
gyroviscous theory
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Extra – more detailed friction
• The forces due to friction on particle species α due to interactions with 

a velocity distribution of species β can be represented in terms of an 
interspecies collision frequency:
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• In a two-species deuterium-carbon plasma, this form ensures that the 
frictional forces between species sum to zero
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Extra – more Miller comparison plots
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Miller, interpolated and fitted (black), vs. EFIT (red)

Angle between fitted and interpolated miller



Traditional Miller flux-surface fits and error
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The error associated with the 

traditional Miller model for 

shot 149468, using a uniform 

triangularity and elongation 

between the upper and lower 

hemispheres, is ~ 1% for 

<0.9, and ~ 3% in the very 

edge.

This is fairly consistent with 

the calculations performed by 

Candy [6]

Left Figure:

Original EFIT plasma area (grey), fitted 

traditional Miller plasma area (blue), and 

orthogonalized traditional Miller basis 

vectors

Right Figure:

Error between the traditional-Miller flux-surface fits 

(blue), and various orders of Fourier fitting, as compared 

to the EFIT data. Error calculated using the method 

described on slide # 13


