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Motivation for this research

* Goal: Develop computationally efficient methods for capturing
multispecies collisional transport in plasmas.

e Multispecies plasma models capture neutral, ion, electron, and
electromagnetic dynamics separately with disparate time scales.

* Bulk plasma dynamics are much slower than electron response.
* Single-fluid plasma models can be inadequate for many applications
including tokamak edge plasmas and inertial confinement fusion.
e Computationally efficient models beyond single fluid are lacking.

* Kinetic models are the most general, but are computationally expensive.

* Approach: Higher-moment?! plasma models offer a cost effective
means to capture kinetic effects beyond standard fluid
descriptions.
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[1] e.g. Torrilhon (2011); McDonald and Torrilhon (2013); Cai, Fan, and Li (2012)



Continuum kinetics: Boltzmann-Maxwell model

* The Boltzmann equation describes the evolution of this phase space distribution based on interactions with
the electromagnetic fields and collisions C,,
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* Maxwell’s equations describe the evolution of the electric and magnetic fields
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* Model is robust, but is six dimensional.
* Solving the Boltzmann-Maxwell model requires a massive computational effort.

* The scale of the Boltzmann model can be reduced using moment models.



Deriving moment models

« Moment models are generated by taking velocity space moments of the Boltzmann equation thereby
converting a six-dimensional equation into a three dimensional set of equations.
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* The moments themselves can be written more compactly
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* In general, taking moments results in an infinite series:
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* Closure: Moment models have to be truncated by relating higher moments to lower moments.



Thermal equilibrium as a basis for closure

* Boltzmann H-theorem: In the limit of infinite collisions, the velocity distribution reaches an thermal
equilibrium described by a Maxwellian.

/ Not in thermal equilibrium — Arbitrary distribution
/ Thermal equilibrium — Maxwellian distribution
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U

* A gasin thermal equilibrium is fully described by 5 moments: density, flow velocity (mean), and isotropic
pressure (variance).

* This implies that if the system is near thermal equilibrium, then only 5 moments need to be modeled.
* Important: The system must be highly collisional to assume a locally thermalized system.

* The H-theorem can be used as a basis for closing higher-moment models.
* The unknown higher moments can be related to deviations from thermal equilibrium.
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Moment models and plasma regimes

* Thermal equilibrium is important for deriving closure schemes, but these closures are limited to a highly
collisional plasma regime.

* Higher-moment models attempt to extend this collisional regime by including additional moments.
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Multispecies 5-moment plasma model

Continuity equation

0tpa + u{xaxipa = _paaxiu?

* Momentum equation
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* |sotropic pressure equation
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* The pressure tensor P“ and heat flux vector g{* can be deflned for weakly magnetized plasmas near
thermal equilibrium
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* To understand the effect of strong magnetization on the 5-moment closure, we extend the moment model
to 13-moments.



Extension to 13 moments

The 13-moment model includes additional effects related to larger deviations from thermal equilibrium.

The isotropic pressure equation is extended to evolve the full pressure tensor Pf]’-
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Three additional moments are given by the heat flux equation

3P, PS
S Ox [Gf5 + 5— 0, PS +— 0, Pf;
Pa

Orqi + Ui 0x,qi" = —qj Ox Ui’ — g Oy uj’ h“kax]uk 2 o0

2

a
CI aﬁ aﬁ Pl] aﬂ

Unlike the 5-moment model, P“ and q{* are now directly evolved.

The full heat flux tensor h;};, and higher moment variable g;; must still be related to the known moments.



Pearson type-IV closure

* Closure is derived for applications in rarefied gas dynamics?.

* The Pearson type-IV distribution is used in statistics to analyze skew and kurtosis in datasets.
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» Skew is closely tied to the heat flux h{j;, while kurtosis defines gj’.
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[1] Torrilhon, CCP (2010)
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Deriving the Pearson type-IV closure

* Given a distribution fp, (¥, ¢ (%), p1(xX), P, (X), ...), its spatial variables ¢;(X) are related to the known
moments through moment integration.
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 The relation between the distribution variables and the known moments defines the closure.
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* Relation between known moments and distribution variables ¢; is nonlinear.

* The 6D Pearson type-IV distribution has 14 variables to describe 13 moments.
* Infinite possible solutions for h;j, and g;;.
* Additional constraint is chosen to enforce hyperbolicity and/or realizability.

» While the solution enforces hyperbolicity and/or realizability, the closure is not physically accurate on its
own.



Pearson type-IV closure leads to artificial waves

* The neutral species shock tube is used to test closures.

Wall

* Collisionality determines the resulting profile which can vary from discontinuous (highly
collisional) to smooth (weakly collisional). -"wp'ess‘"e
* The Pearson-IV closure attempts to capture weakly collisional dynamics, but with only 13 >
waves. v *
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e Collision operators are used to damp the artificial waves.

Sean Miller 13-moment plasma model 11



Including collisions within a species

 Collisions within a species are captured using a BGK collision operator to drive f, towards a Maxwellian f,
over a time scale 7,,.

1 ~
Coq = _a(fa - fa)

* Intraspecies scattering collisions do not affect density, momentum, or isotropic energy, consistent with the
5-moment model
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e Collisions do drive the pressure tensor to isotropy
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 And the heat flux vector g{* is driven to zero
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BGK collision operator improves the behavior

* Shock tube is now simulated with moderate collisionality to show the effect of the BGK collision operator.

* The collisional time scale is dependent on the temperature and density 7,, = 0.01 ch/z/na so the domain has a region of
high collisionality area (x < 0) and low collisionality (x > 0).

* The Boltzmann model is used to show that a smooth shock is expected.

. Thﬁ' BGK (I)perator captures the smooth profile in the highly collisional area, but the artificial waves still appear in the weakly
collisional area.
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* An additional operator is required to treat the weakly collisional regime.
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Diffusion eliminates artificial wave structure

* To counter the artificial waves of the Pearson-1V closure, a diffusive stabilization operator is developed based
on the BGK collision operator.

Coa = axi (Daaxi(fa - fa))

* As with the relaxation form, the diffusion operator does not affect the density, momentum, or isotropic
energy.
(Ca'a>:R1§m= ga:()
» A stabilizing diffusion is added to the anisotropic pressure terms and helps keep the pressure tensor positive
definite.

Q" = Oy, (Daaxi (P§ - Pa5ij))
* And it drives the heat flux vector to zero
W = 0,,(2Da0x,qf")
e The diffusion coefficient is similar to those found using Chapman-Enskog expansion methods
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Diffusion operator is consistent with kinetic model

* The shock tube is again simulated with the Boltzmann model and Pearson-IV model with BGK collisions, but
now includes the Pearson-IV model with BGK collisions and diffusion operator.

* The diffusive operator helps damp out the artificial waves in the weakly collisional area.

. Agdr? st?bility to the model for multidimensional applications and magnetized flow, as well as increase the physical accuracy
of the closure.
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Including collisions between species

 Scattering collisions do not affect density (Caﬁ) = 0.

* Momentum exchange drives velocities together (friction) at a rate related to the interspecies thermalization
time scale 744

* Heat exchange drives temperatures together
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* Heat flux exchange drives the flow of temperature together
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The 13-moment plasma model is now complete.
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Multispecies Hartmann flow benchmark

e Used to benchmark resistive, magnetic, and viscous
effects in plasmas.

* Benchmark is an extension of the MHD Hartmann flow
based on MHD generators.

* Interplay between frozen-in magnetic field, resistive
diffusion, and viscous drag result in complex shear
velocity profile.
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Solution to multispecies Hartmann flow problem

* For low Mach number applications, the Hartmann flow is the solution to a coupled set of elliptic equations
derived from the multispecies 5-moment plasma model.
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* With the coefficients
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* This equation set is solved numerically.



Multispecies Hartmann flow comparison

e At high collisionality and weak magnetization, the 13-
moment model converges to the 5-moment analytical
solution.

* Simulations results (dots) and analytical solution (solid line)
for a two-fluid application with (m; =1,q; =1)and
electrons (m, = 0.01, g, = —1).

* The 13-moment model accurately captures magnetized
collisional plasma effects at moderate to high collisionalities
and weak to moderate magnetic field strengths.
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summary

* Presented a new multispecies 13-moment plasma model for capturing magnetized collisional transport that
extends the applicability of fluid theory.
* Model closure assumes a Pearson type-1V distribution in velocity space.
* A BGK collision operator is used to treat intraspecies interactions in highly collisional plasmas.
* Adiffusive operator treats intraspecies interactions in rarefied regimes.
* Interspecies collision operators add resistive and thermal exchange effects.
* Model was benchmarked against the multispecies Hartmann flow problem and was shown to be valid for moderate to high
collisionalities with weak to moderate levels of magnetization.
e Up to this point the model has been developed as a foundation, but research is still underway.
* Developing a more physically consistent closure.
* Developing ionization, recombination, and charge exchange operators for low temperature applications.
* Developing benchmarks for non-equilibrium plasmas.



