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Motivation for this research

• Goal: Develop computationally efficient methods for capturing 
multispecies collisional transport in plasmas.

• Multispecies plasma models capture neutral, ion, electron, and 
electromagnetic dynamics separately with disparate time scales.

• Bulk plasma dynamics are much slower than electron response.

• Single-fluid plasma models can be inadequate for many applications 
including tokamak edge plasmas and inertial confinement fusion.

• Computationally efficient models beyond single fluid are lacking.

• Kinetic models are the most general, but are computationally expensive.

• Approach: Higher-moment1 plasma models offer a cost effective
means to capture kinetic effects beyond standard fluid 
descriptions.
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[1] e.g. Torrilhon (2011); McDonald and Torrilhon (2013); Cai, Fan, and Li (2012)



Continuum kinetics: Boltzmann-Maxwell model
• The Boltzmann equation describes the evolution of this phase space distribution based on interactions with 

the electromagnetic fields and collisions 𝐶𝛼

• Maxwell’s equations describe the evolution of the electric and magnetic fields

• Model is robust, but is six dimensional.
• Solving the Boltzmann-Maxwell model requires a massive computational effort.

• The scale of the Boltzmann model can be reduced using moment models.
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Deriving moment models
• Moment models are generated by taking velocity space moments of the Boltzmann equation thereby 

converting a six-dimensional equation into a three dimensional set of equations.

• The moments themselves can be written more compactly

• In general, taking moments results in an infinite series:

• Closure: Moment models have to be truncated by relating higher moments to lower moments.
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• Boltzmann H-theorem: In the limit of infinite collisions, the velocity distribution reaches an thermal 
equilibrium described by a Maxwellian. 

• A gas in thermal equilibrium is fully described by 5 moments: density, flow velocity (mean), and isotropic 
pressure (variance).

• This implies that if the system is near thermal equilibrium, then only 5 moments need to be modeled.
• Important: The system must be highly collisional to assume a locally thermalized system.

• The H-theorem can be used as a basis for closing higher-moment models.
• The unknown higher moments can be related to deviations from thermal equilibrium.

Thermal equilibrium as a basis for closure
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Thermal equilibrium – Maxwellian distribution

Not in thermal equilibrium – Arbitrary distribution



Moment models and plasma regimes
• Thermal equilibrium is important for deriving closure schemes, but these closures are limited to a highly 

collisional plasma regime.

• Higher-moment models attempt to extend this collisional regime by including additional moments.
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Highly Collisional Weakly Collisional



Multispecies 5-moment plasma model
• Continuity equation

• Momentum equation

• Isotropic pressure equation

• The pressure tensor 𝑃𝑖𝑗
𝛼 and heat flux vector 𝑞𝑖

𝛼 can be defined for weakly magnetized plasmas near 
thermal equilibrium

• To understand the effect of strong magnetization on the 5-moment closure, we extend the moment model 
to 13-moments.
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Extension to 13 moments
• The 13-moment model includes additional effects related to larger deviations from thermal equilibrium.

• The isotropic pressure equation is extended to evolve the full pressure tensor 𝑃𝑖𝑗
𝛼

• Three additional moments are given by the heat flux equation

• Unlike the 5-moment model, 𝑃𝑖𝑗
𝛼 and 𝑞𝑖

𝛼 are now directly evolved.

• The full heat flux tensor ℎ𝑖𝑗𝑘
𝛼 and higher moment variable 𝑔𝑖𝑗

𝛼 must still be related to the known moments. 
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Pearson type-IV closure
• Closure is derived for applications in rarefied gas dynamics1. 

• The Pearson type-IV distribution is used in statistics to analyze skew and kurtosis in datasets.

• Skew is closely tied to the heat flux ℎ𝑖𝑗𝑘
𝛼 , while kurtosis defines 𝑔𝑖𝑗

𝛼 .
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[1] Torrilhon, CCP (2010) 
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Deriving the Pearson type-IV closure
• Given a distribution 𝑓𝑃4  𝑣, 𝜙0  𝑥 , 𝜙1  𝑥 , 𝜙2  𝑥 , … , its spatial variables 𝜙𝑖  𝑥 are related to the known 

moments through moment integration.

• The relation between the distribution variables and the known moments defines the closure.

• Relation between known moments and distribution variables 𝜙𝑖 is nonlinear.

• The 6D Pearson type-IV distribution has 14 variables to describe 13 moments. 
• Infinite possible solutions for ℎ𝑖𝑗𝑘 and 𝑔𝑖𝑗.
• Additional constraint is chosen to enforce hyperbolicity and/or realizability.

• While the solution enforces hyperbolicity and/or realizability, the closure is not physically accurate on its 
own.
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Pearson type-IV closure leads to artificial waves
• The neutral species shock tube is used to test closures.

• Collisionality determines the resulting profile which can vary from discontinuous (highly 
collisional) to smooth (weakly collisional).

• The Pearson-IV closure attempts to capture weakly collisional dynamics, but with only 13 
waves.

• Collision operators are used to damp the artificial waves.
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Including collisions within a species
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• Collisions within a species are captured using a BGK collision operator to drive 𝑓𝛼 towards a Maxwellian  𝑓𝛼
over a time scale 𝜏𝛼𝛼.

• Intraspecies scattering collisions do not affect density, momentum, or isotropic energy, consistent with the 
5-moment model

• Collisions do drive the pressure tensor to isotropy

• And the heat flux vector 𝑞𝑖
𝛼 is driven to zero

𝐶𝛼𝛼 = −
1

𝜏𝛼𝛼
𝑓𝛼 −  𝑓𝛼

𝑄𝑖𝑗
𝛼𝛼 = −

1

𝜏𝛼𝛼
𝑃𝑖𝑗

𝛼 − 𝑃𝛼𝛿𝑖𝑗

𝑊𝑖
𝛼𝛼 = −

2

𝜏𝛼𝛼
𝑞𝑖

𝛼

𝐶𝛼𝛼 = 𝑅𝑖
𝛼𝛼 = 𝑄𝑖𝑖

𝛼𝛼 = 0



BGK collision operator improves the behavior
• Shock tube is now simulated with moderate collisionality to show the effect of the BGK collision operator.

• The collisional time scale is dependent on the temperature and density 𝜏𝛼𝛼 = 0.01 𝑇𝛼
3/2

/𝑛𝛼 so the domain has a region of 
high collisionality area (𝑥 < 0) and low collisionality (𝑥 > 0).

• The Boltzmann model is used to show that a smooth shock is expected.
• The BGK operator captures the smooth profile in the highly collisional area, but the artificial waves still appear in the weakly 

collisional area.

• An additional operator is required to treat the weakly collisional regime.
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Diffusion eliminates artificial wave structure

Sean Miller 13-moment plasma model 14

• To counter the artificial waves of the Pearson-IV closure, a diffusive stabilization operator is developed based 
on the BGK collision operator.

• As with the relaxation form, the diffusion operator does not affect the density, momentum, or isotropic 
energy.

• A stabilizing diffusion is added to the anisotropic pressure terms and helps keep the pressure tensor positive 
definite.

• And it drives the heat flux vector to zero

• The diffusion coefficient is similar to those found using Chapman-Enskog expansion methods

𝐶𝛼𝛼 = 𝜕𝑥𝑖
𝐷𝛼𝜕𝑥𝑖

𝑓𝛼 −  𝑓𝛼

𝑄𝑖𝑗
𝛼𝛼 = 𝜕𝑥𝑖

𝐷𝛼𝜕𝑥𝑖
𝑃𝑖𝑗

𝛼 − 𝑃𝛼𝛿𝑖𝑗

𝑊𝑖
𝛼𝛼 = 𝜕𝑥𝑖

2𝐷𝛼𝜕𝑥𝑖
𝑞𝑖

𝛼

𝐷𝛼 ≈
𝑃𝛼𝜏𝛼𝛼

𝜌𝛼

𝐶𝛼𝛼 = 𝑅𝑖
𝛼𝛼 = 𝑄𝑖𝑖

𝛼𝛼 = 0



Diffusion operator is consistent with kinetic model
• The shock tube is again simulated with the Boltzmann model and Pearson-IV model with BGK collisions, but 

now includes the Pearson-IV model with BGK collisions and diffusion operator.
• The diffusive operator helps damp out the artificial waves in the weakly collisional area.
• Adds stability to the model for multidimensional applications and magnetized flow, as well as increase the physical accuracy 

of the closure.
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Including collisions between species
• Scattering collisions do not affect density 𝐶𝛼𝛽 = 0.

• Momentum exchange drives velocities together (friction) at a rate related to the interspecies thermalization 
time scale 𝜏𝛼𝛽

• Heat exchange drives temperatures together

• Heat flux exchange drives the flow of temperature together

• The 13-moment plasma model is now complete.
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Multispecies Hartmann flow benchmark

• Used to benchmark resistive, magnetic, and viscous 
effects in plasmas.

• Benchmark is an extension of the MHD Hartmann flow 
based on MHD generators.

• Interplay between frozen-in magnetic field, resistive 
diffusion, and viscous drag result in complex shear 
velocity profile.
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Solution to multispecies Hartmann flow problem
• For low Mach number applications, the Hartmann flow is the solution to a coupled set of elliptic equations 

derived from the multispecies 5-moment plasma model.

• With the coefficients

• This equation set is solved numerically.
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Multispecies Hartmann flow comparison
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• At high collisionality and weak magnetization, the 13-
moment model converges to the 5-moment analytical 
solution.

• Simulations results (dots) and analytical solution (solid line) 
for a two-fluid application with ions (𝑚𝑖 = 1 , 𝑞𝑖 = 1) and 
electrons (𝑚𝑒 = 0.01, 𝑞𝑒 = −1).

• The 13-moment model accurately captures magnetized 
collisional plasma effects at moderate to high collisionalities 
and weak to moderate magnetic field strengths.



Summary

• Presented a new multispecies 13-moment plasma model for capturing magnetized collisional transport that 
extends the applicability of fluid theory.

• Model closure assumes a Pearson type-IV distribution in velocity space. 

• A BGK collision operator is used to treat intraspecies interactions in highly collisional plasmas.

• A diffusive operator treats intraspecies interactions in rarefied regimes.

• Interspecies collision operators add resistive and thermal exchange effects.

• Model was benchmarked against the multispecies Hartmann flow problem and was shown to be valid for moderate to high 
collisionalities with weak to moderate levels of magnetization.

• Up to this point the model has been developed as a foundation, but research is still underway.
• Developing a more physically consistent closure.

• Developing ionization, recombination, and charge exchange operators for low temperature applications.

• Developing benchmarks for non-equilibrium plasmas.
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