MHD Stability of Negative Triangularity Tokamaks

INSTITUTE FOR FUSION STUDIES THE UNIVERSITY OF TEXAS AT AUSTIN

- 1. Motivations: why negative triangularity
 - Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
 - H mode confinement is poor
 - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- **3. Our NEW results**: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
 - High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!
 - ELM free, no major concern about RWMs, kink disruption, etc.
 - Steady state confinement, "soft" beta limit (high n ballooning)
 - Experiments show low turbulence level
- 4. Conclusions and discussion

- 1. Motivations: why negative triangularity
 - Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
 - H mode confinement is poor
 - > L mode gets the H mode level confinement, beta limit is lower, but acceptable
- **3. Our NEW results**: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
 - High beta confinement: 8-10 Li (I/aB), beta limit doubled!
 - ELM free, no major concern about RWMs, kink disruption, etc.
 - Steady state confinement, "soft" beta limit (high n ballooning)
 - Experiments show low turbulence level
- 4. Conclusions and discussion

H-modes are good, but ELMs are unacceptable

Non core-the-first design philosophy: Negative triangularity tokamaks (Kikuchi, et al.)

Original thoughts: Negative triangularity can gain for divertor design, but may give up in the beta limit

- a larger separatrix wetted area,
- wider trapped particle-free scrape-off layer,
- Iarger pumping conductance from the divertor room.

- 1. Motivations: why negative triangularity
 - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
 - H mode confinement is poor
 - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- **3. Our NEW results**: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
 - High beta confinement: 8-10 Li (I/aB), beta limit doubled!
 - ELM free, no major concern about RWMs, kink disruption, etc.
 - Steady state confinement, "soft" beta limit (high n ballooning)
 - Experiments show low turbulence level
- 4. Conclusions and discussion

Earlier TCV negative triangularity experiments

DIII-D Experiment Was Motivated by Results From TCV

- TCV saw x2 confinement improvement in negative (-δ) over positive (+δ) triangularity discharges
- Achieved H-mode confinement in L-mode discharge
- Saw reduced turbulence levels in neg. compared to pos.

Initial Results from MP 2017-11-02: Transport Variation with Positive and Negative Triangularity

Presented by Max Austin

with

A. Marinoni, J.A. Boedo, M.W. Brookman, A.W. Hyatt, G.R. McKee, A.E. Neuman, C.C. Petty, T.L. Rhodes, K.E. Thome, M.L. Walker and the DIII-D Team

Recent DIII-D experiments

Present DIII-D I May 1

Summary: Negative Triangularity Discharges Created in DIII-D

Shot 166192 Time 3925 ms

- Unconventional negative triangularity (-δ) discharges have been created in DIII-D
- Compared to matching positive *b*, they have reduced turbulence and transport

Important development of DIII-D experiment

$I_e = I_i$ case At High Beam Power, Compared Neg. δ_{-} L-mode and Pos. δ_{-} H-mode

- Same heating trajectory both shapes
 - 7 MW NBI
 - 3 MW ECH
- Pos. δ goes into ELMing H-mode at 1400 ms

the H-mode-level confinement (H98yp=1.2) with L-mode-like edge behavior without ELMs

Stability: DIII-D experiment interpretation

Equilibrium: use the g file from experimental data reconstruction
 Ideal MHD Stability is confirmed with critical wall position 1.11, consistent with the D3D limiter experiments

04/2

Numerical exploration of D3D type of L-mode equilibria

- > Three types of triangularity cases: $\delta = 0.4$, 0, and 0.4 are investigated
- L mode profile is assumed (close to DIIID experiments)
- Results: Positive triangularity: best

Zero triangularity: stay at middle

- Negative triangularity: worst, but acceptable
- 04/25/20 > Negative triangularity is bad for H mode

- 1. Motivations: why negative triangularity
 - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
 - H mode confinement is poor
 - > L mode gets the H mode level confinement, beta limit is lower, but acceptable
- **3. Our NEW results**: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
 - High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!
 - ELM free, no major concern about RWMs, kink disruption, etc.
 - Steady state confinement, "soft" beta limit (high n ballooning)
 - Experiments show low turbulence level
- 4. Conclusions and discussion

Profile comparison between positive and negative triangularity cases

Observation: the safety factor q at edge is smaller for negative triangularity case

Motivate us to reduce the Ohmic current to consider the advanced tokamak scenario with high bootstrap current fraction

Negative triangularity tokamak in advanced scenario with high bootstrap current fraction

Given density and temperature profiles, the current is computed self consistently

Low n (1-5) kink mode stability for negative triangularity tokamak in advanced scenario

High n ballooning mode stability for negative triangularity tokamak in advanced scenario

Because of peaked pressure profile, high n ballooning modes tend to give lower beta_N limit: 4 li (I/aB)
 Further profile optimization

is still in process

- High n ballooning mode theory keeps only lowest order, global calculation shows that the n=5-10 stability can be achieved.
- Possible FLR stabilization for high n modes
- "Soft" beta limit

Further D3D experiments, guided by our calculations, yield interesting results based on the preliminary analyses

Shots with lower Ip did not exhibit reduced confinement

- Comparison of neg. triang., last year 0.9 MA, this year 0.75 MA
- H-factor higher for lower lp
- Tau_e about the same

Note that: the confinement time usually goes with the current in the positive triangularity case

4

- 1. Motivations: why negative triangularity
 - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
 - H mode confinement is poor
 - > L mode gets the H mode level confinement, beta limit is lower, but acceptable
- **3. Our NEW results**: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
 - High beta confinement: 8-10 Li (I/aB), beta limit doubled!
 - ELM free, no major concern about RWMs, kink disruption, etc.
 - Steady state confinement, "soft" beta limit (high n ballooning)
 - Experiments show low turbulence level

4. Conclusions and discussion

Conclusions: Negative triangularity & L - mode & low I_p and high bootstrap current

- The benefits of negative triangularity are not limited to divertor
 - > NEW: negative triangularity also improves MHD stability
 - ✓ Steady state confinement with high bootstrap current fraction
 - ✓ ELM free
 - ✓ high resistive wall mode beta limit
 - ✓ Low n stability, reduce the kink type disruption possibility
 - ✓ soft instabilities (high n ballooning modes) to avoid high inevitable
 beta state, that eventually causing disruption, FLR stabilization? Global effects
 - Experiments already show a reduced anomalous transport