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Abstract

The Chapman-Enskog like electron drift kinetic equation∗ provides kinetic closure of fluid
equations and extends to the long mean free path regime of magnetized plasmas. In this work
we discuss the application of a continuum numerical solution to this equation to provide
closures for the NIMROD code. Accuracy of the solution is aided by expressing the equation
in velocity coordinates using pitch-angle and speed normalized by the thermal speed. This
tightly couples the temperature to the kinetic distortion, and demands a careful treatment of
the time-centering to implicitly advance both over large time steps. Comparisons are
presented for three approaches: 1) leapfrog integration, 2) Picard iteration, and 3)
simultaneous semi-implicit integration. Comparisons are made of computational efficiency
and required velocity space resolution. Results are presented for applications involving
equilibration along field lines which leads to temperature flattening across magnetic islands in
slab, cylindrical and toroidal geometry.

∗J. J. Ramos, Phys Plasmas 17, 082502 (2010).
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Continuum kinetic physics have been
incorporated into NIMROD

Qualities of Chapman-Enskog like (CEL) method∗:
I Separates fluid and kinetic parts of distribution function
I Fluid equations govern lowest order fluid quantities,
na, Va, and Ta

I Kinetic equation governs kinetic distortion, Fa
I na, Va, and Ta provide thermodynamic drives for Fa
I Moments of Fa close fluid equations

Research Objective: Understand challenges
I Strong nonlinear coupling between fluid and Fa
I Scaling velocity by thermal speed
I Implicit advance for large time steps

∗S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases
(Cambridge University Press, Cambridge, 1939); Z. Chang and J.D. Callen, Phys. Fluids 4,
1167 (1992).
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CEL method separates fluid and kinetic physics
Starting from the DKE∗ project out Maxwellian part, f = f

M
+ F ,

and transform to coordinates, (s, ξ) ≡ (|v −V| /vT ,v ·B/ |v| |B|):
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∗R.D. Hazeltine, Plasma Phys. 15, 77 (1973); R.D. Hazeltine and J.D. Meiss, Plasma Confinement
(Adisson-Wesley, Redwood City, 1992); J. J. Ramos, Phys Plasmas 17, 082502 (2010).
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Discretization based on NIMROD’s spatial and
novel velocity representation∗

NIMROD’s spatial representation:

F (R,Z, φ, s, ξ, t) =
∑
i

Fi,n=0 (s, ξ, t)αi,n=0 + 2<e

 ∑
i,n>0

Fi,n (s, ξ, t)αi,n


Pitch-angle discretization uses finite element method:

Fi,n (s, ξ, t) =
∑
l

Fi,n,l (s, t)Pl (ξ)

Speed discretization uses collocation method with polynomial expansion:

Fi,n,l (s, t) ≡ e−s2
∑
k

Fi,n,l,k (t)Lk (s) (1)

where collocation points and polynomials, Lk (s), are abscissa and polynomials of
non-standard quadrature scheme with weight function e−s2and orthogonality :∫ ∞

0
dsLk (s)Lk′ (s) e−s2 = δkk′

∗E. D. Held, et al, Phys Plasmas 22, 032511 (2015).
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Challenges highlighted in kinetic thermal
transport case studies
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2
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(red terms have temperature dependence.)
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Possible θ-centered semi-implicit time advances

Problem: tight nonlinear coupling
of fluid and kinetic distortion
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complex nonlinear
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Test case 1: Anisotropic thermal conduction∗

Step 1. Impose E = E0 cos (πx) cos (πy) ẑ on high density plasma resulting
in low flow and B field with field lines along contours of |E|.
Step 2. Rescale n, fix B and evolve T :

3

2
n
∂T

∂t
= κ⊥∇ · [(I− bb) · ∇T ]−∇ · q‖ +Qext

where Qext has same spatial dependence as |E|.
The resulting steady state has

B · ∇T = 0

I Standard Fourier conduction: q‖ = −κ‖ (b · ∇T )b

I Mixed finite element: θ∆q‖ → q̄‖b where

q̄‖ + θκ‖b · ∇∆T = −κ‖b · ∇Tn

I Kinetic heat flux: q‖ =
m

2

∫
dvv2v‖F

∗C.R. Sovinec, et al, J. Comput. Phys. 195 (2004) 355–386
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Staggered advance to steady state illustrates
kinetic closure akin to mixed finite element
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Test case 2: thermal transport in magnetic
island

Kinetic parallel thermal transport
across magnetic island in slab ge-
ometry

I n = 9.5175× 1018 m−3, V = 0

I Ignore electron-ion and
ion-electron collisions

I Boundary condition:
periodic in Z direction

I Objective: take as large
time steps as possible to
get to steady state with
kinetic parallel heat flux

I 32x32 grid in xy-plane
I 3rd degree polynomials

Initial temperature is a linear gradient
that flattens across island as T evolves
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Standard and mixed finite element steady state
parallel heat flux with conductivity κ‖ = 1.5× 107

Standard fluid steady state
q‖
[
W/m2

] Mixed finite element steady state
q‖
[
W/m2

]
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Review of Picard iterations

Goal: Integrate the nonlinear initial value problem

x′ (t) = g (x (t)) , x (t0) = x0

Where formal integration gives

x (t) = x0 +

∫ t

t0

g (x (s)) ds

Forward Euler method:

x (t) = x0 + ∆tg (x0)

Backward Euler method:

x (t) = x0 + ∆tg (x (t))

Picard iterations: solve explicit equation iteratively to converge on solution
to implicit equation

xk+1 = x0 + ∆tg (xk)
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How to apply Picard and Newton methods to our
set of differential equations?

Implicit advance of F:
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Review of Newton’s method

Goal: find zero of nonlinear f (x) near x0

I Approximate function with tangent line:
y (x) = f ′ (x0) (x− x0) + f (x0)

I Find zero of tangent line, and iterate:
f ′ (xi) (xi+1 − xi) = −f (xi)

Goal: find solution to nonlinear system A (x) = b

I Let f (x) = A (x)− b, and choose initial guess, x0.
I Let Jij (x) = ∂fi/∂xj (x) = ∂Ai/∂xj (x)

I Approximate f with hyper-plane:
y (x) = J (x0) · (x− x0) + A (x0)− b

I Find zeros of tangent lines, and iterate:
J (xi) · (xi+1 − xi) = b−A (xi) ←− solved with preconditioned GMRES
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Kinetic heat flux calculated as moment of
distribution function
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Newton more costly than Picard iterations but
can take larger time step

I 256 processors, 32x32 grid, polynomial degree=3
I Starting from MFE steady state run an additional 10−5 s

∆t wall clock time average GMRES time per
to t = 10−5 s iterations per step iteration

Picard 10−8 s 75 mins 5 0.9 s

Newton 10−8 s 200 mins 4 3 s

Newton 10−7 s 49 mins 52 0.57 s

Newton 10−6 s 42 mins 723 0.35 s

I Need to implement parallelism over speed grid points for efficiency
improvement.

15 / 16



Upcoming work

I Implement s-parallelism for simultaneous advance
I Possibly speed-up Newton iterations

(reuse preconditioning matrix, improve check for convergence)
I Adaptive time step
I Examine needed velocity grid for electron-ion collisions
I Use developed code in a tearing mode simulation

with evolving B, n, V.
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