

Overview

- We report quasilinear modeling of inhomogeneous drift-wave (DW) turbulence and zonal flows (ZFs) in phase space with full-wave effects retained.
- Specifically, by applying the Wigner-Moyal approach to the Hasegawa-Mima equation, we treat DW turbulence as quantumlike plasma, where the ZF velocity acts as a collective field.
- Our results improve the understanding of the zonostrophic instability, tertiary instability, and predator-prey oscillations. Full-wave effects determined by the ZF wavenumber q are found to be critical.

generalized Hasegawa–Mima equation (gHME)

- Can be used to study some aspects of the ITG–ZF interactions.
- Electrostatic fluctuations on the x y plane. lons: $E \times B$ and polarization drift. Electrons: adiabatic response $\delta n_e = |e|\delta \varphi/T_e$ except for ZFs.

$$\frac{\partial w}{\partial t} + \beta \frac{\partial \varphi}{\partial x} + (\hat{\boldsymbol{z}} \times \nabla \varphi) \cdot \nabla w = Q \qquad (1)$$

$$w \doteq (\nabla^2 - \hat{a})\varphi$$
: generalized vorticity,
 $\hat{a}f \doteq f - \langle f \rangle, \quad \langle f \rangle \doteq \frac{1}{T} \int^{L_x} f dx.$

• Conserved quantities (Q = 0): energy and enstrophy:

$$E \doteq \frac{1}{2} \int d^2 x \ [(\nabla \varphi)^2 + (\hat{a}\varphi)^2], \quad \mathcal{Z} \doteq \frac{1}{2} \int d^2 x \ w^2.$$

• φ is normalized by $T_e/|e|$; length unit: ion sound radius ρ_s ; time unit: inverse ion gyrofrequency Ω_i^{-1} ; β : density gradient.

The role of q in tertiary instability (TI)

- The TI is the instability of a strong prescribed ZF. It is of interest due to its potential role in finite Dimits shift, Ref. [1] has some historical discussions.
- Problem setup: linearizing the gHME on a stationary ZF velocity U(y), assuming the perturbation is $\tilde{\varphi} = \phi(y) \exp(ik_x x - i\omega t)$. Then,

$$\left(\frac{d^2}{dy^2} - 1 - k_x^2 - \frac{U'' - \beta}{U - \omega/k_x}\right)\phi(y) = 0.$$
 (2)

• Assume $U = u_0 \cos qy$. By following and correcting Ref. [2], the TI growth rate is approximately

$$\gamma_{\mathrm{TI},1} = |k_x u_0| \vartheta H(\vartheta) \sqrt{1 - \varrho^{-2}}, \qquad (3)$$

where $\vartheta \doteq 1 - (\bar{q}^2 + 1 + k_x^2)/q^2$, $\varrho = u_0 q^2/\beta$, and H is the Heaviside step function.

- Two necessary conditions for the TI are: (i) the Rayleigh–Kuo criterion, namely, $U'' = \beta$ is satisfied somewhere (i.e., $q^2 u_0 > \beta$); also, (ii) q > 1.
- An alternative approximation of γ_{TI} is mentioned in Ref. [1]:

 $U(t = 0, y) = u_0 \cos qy$, $u_0 = 1$, q = 1.6, and $\bar{q} = 0$.

• Qualitatively similar conclusions apply to non-sinusoidal ZFs.

Sherwood 2018, Auburn, AL.

Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation Hongxuan Zhu^{1,2}, Yao Zhou², D. E. Ruiz³, and I. Y. Dodin^{1,2}.

¹Princeton University ²Princeton Plasma Physics Laboratory ³Sandia National Laboratories

A simple PP model from Ref. [6] based on
$$\partial_t \mathcal{E} = \mathcal{EN} - a_1 \mathcal{E}^2 - a_2 V^2 \mathcal{E} - a_2 \partial_t \mathcal{N} = -c_1 \mathcal{E}$$

- structure. A quantitative theory is yet to be developed.

- [6] E.-J. Kim and P. H. Diamond, Phys. Rev. Lett 90, 185006 (2003).