2019 International Sherwood Fusion Conference

Force Free State for Tokamak Plasmas

W. W. Lee and R. B. White

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

The gyrokientic MHD equations associated with the gyrokinetic electromagnetic Vlasov-Maxwell system [1] can be written as

$$\left(\frac{\partial}{\partial t} - \frac{c}{B}\nabla\phi \times \mathbf{b}\cdot\nabla\right)\nabla_{\perp}^{2}\phi - 4\pi\frac{v_{A}^{2}}{c^{2}}\nabla\cdot(\mathbf{J}_{\parallel} + \mathbf{J}_{\perp}) = 0$$
(1)

for the vorticity equation, and

$$E_{\parallel} \equiv -\frac{1}{c} \frac{\partial A_{\parallel}}{\partial t} - \mathbf{b} \cdot \nabla \phi \approx 0, \tag{2}$$

for the parallel Ohm's law, where \mathbf{J}_{\parallel} is given by the parallel Amperes' law,

$$\nabla^2 A_{\parallel} = -\frac{4\pi}{c} J_{\parallel},\tag{3}$$

and the finite-Larmor-radius (FLR) modified ion perpendicular pressure balance [1] becomes

$$\mathbf{J}_{\perp} \approx \frac{c}{B} \hat{\mathbf{b}} \times (\nabla p_i) \left[1 - \frac{1}{2} \rho_i^2 \frac{\nabla_{\perp}^2 p_i}{p_i} \right].$$
(4)

The modification of the poloidal current, J_{\perp} , is the result of the radial electric field of the form [2,3],

$$enE = \frac{1}{2} \nabla_{\perp} p_i. \tag{5}$$

If

$$\nabla p_i \approx 0$$

or

$$p_i \propto exp(-\sqrt{2r/\rho_i}),$$

the poloidal current, J_{\perp} , vanishes and we reach a force-free steady state with shear Alfven waves as normal modes. The relationship between the H-mode in tokamak plasmas and the force free state will be discussed.

- [1] W. W. Lee, Phys. Plasmas, 23, 070705 (2016).
- [2] W. W. Lee and R. B. White, Phys. Plasmas 24, 081204 (2017).
- [3] W. W. Lee and R. B. White, Phys. Plasmas 25, 054702 (2018).