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Need a model for collisions in Gkeyll’s kinetic solvers

↵ = (v, qs(E+ v ⇥B)/ms)

@J fs
@t

+r · J Ṙfs +
@

@vk
J v̇kfs = JC[fs] + J Ss

@fs
@t

+rz ·↵fs = C[fs] + Ss

Vlasov-Maxwell:

Long wave length full-   gyrokinetics:

See           P3.007 A. Hakim                           P3.012 J. Juno

                 P3.011 V. Skoutnev                       P3.013 J. TenBarge

See           P3.006 T. Bernard                         P3.007 A. Hakim

                 P3.008 N. Mandell                         P3.010 G. Hammett

collision termf



and          defined later.
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Use a Fokker-Planck-like model of collisions

Recall the (Rosenbluth) Fokker-Planck operator:

C[fs] = � @

@vi
(h�viis fs) +

1

2

@2

@vivj

�
h�vi�vjis fs

�

For now consider the Dougherty limit

h�viis = �⌫ss (vi � us,i)�
X

r 6=s

⌫sr (vi � usr,i)

The operator remains nonlinear and full-   given that (in 1D)f

M0sv
2
ts = M2s �M1sus

M0sus = M1s
Mks =

Z 1

�1
vkfs(x, v, t) dvwhere

usr v2t,sr

h�vi�vjis = 2⌫ssv
2
t,s�ij +

X

r 6=s

2⌫srv
2
t,sr�ij



where       is the entropy.
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Self-collisions are conservative + have an H-theorem

Dougherty like-particle collisions conserve particles, momentum and energy.


Momentum conservation, for example, follows from (assume                   )
Z 1

�1
vC[fs] =

Z 1

�1
⌫ssv

@

@v


(v � us) fs + v2t,s

@fs
@v

�
dv,

=

⇢
⌫ssv


(v � us) fs + v2t,s

@fs
@v

�
� ⌫ssv

2
t,sfs

�1

�1
�

Z 1

�1
⌫ss (v � us) fs dv,

= �⌫ss (M1s � usM0s) = 0

⌫ss 6= ⌫ss(v)

One can also show that this (self-collisions) operator is self-adjoint and has an


H-theorem1:

@S
@t

� 0 S
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•                                              used to study universal instability2.


•                                                used to study ion acoustic waves3.


•                        used to study drift waves with varying collisionality4.


•                                           used in simulations of LAPD and NSTX5.
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Variety of multi-species Dougherty collisions exist

C[fs, fr] = ⌫sr
@

@v


(v � usr) fs + v2t,sr

@fs
@v

�
,

usr = [mrnr/ (msns)]ur

usr = [⌫rsmr/ (⌫srms)]us

usr = us

uei = ui

vt,sr = vt,s

v2t,ei = v2t,e + (ui � ue)
2

vt,sr = vt,s

vt,sr = vt,s

2Ong, et. al. PoP 4 (1970).

3Ong, et. al. PoP 7 (1973).

4Jorge, et. al. PRL 121 (2018).

5Pan, et. al. PoP 25 (2018).

 Shi, et. al. PoP 26 (2019).
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Instead compute       &        as done for BGK operator

6Greene, Phys. Fluids 16 (1973).

7Morse, Phys. Fluids 6 (1963).

usr v2t,sr

Greene6 combined conservation with momentum and energy relaxation rates7 (for 

distributions near Maxwellians) for the operator C[fs, fr] = ⌫sr (fM,sr � fs)

The cross-species thermal speed, for example, is

v2t,ie =
1

mi +me


me

�
v2t,e + v2t,i

�
+ �

�
mev

2
t,e �miv

2
t,e

�
+

1� �2

6
me (ue � ui)

2
�
� (1 + �)2

12

mi �me

mi +me
(ue � ui)

2

� > �1 is arbitrary.

Note that at               and large relative flows, negative cross-temperature is


possible.

� = 1



Demand conservation + relaxation rates7               & 
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7Morse, Phys. Fluids 6 (1963).
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@
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@
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ms +mr

�s
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2
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h
mrv

2
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2
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2
i

conservation

relaxation rates

(for near-Maxwellians)

This is a linear system for the unknowns         ,          ,         and         .usr v2t,sr urs v2t,rs

� > �1 �2s =
mrnr⌫rs
msns⌫sr



Demand conservation + relaxation rates7               & 
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7Morse, Phys. Fluids 6 (1963).

usr v2t,sr

For the Dougherty operator these cross-velocities and cross-temperatures are

usr = us � �s
1 + �

2
(us � ur)

v2t,sr = v2t,s +
�s
2

1 + �

1 + ms
mr


v2t,r �

ms

mr
v2t,s + (us � ur)

2
�

As                    increases, there is no risk of negative temperature (compare 

with BGK case on slide 6)

(us � ur)
2
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With this choice of         and          the operator

Multi-species Dougherty collisions are conservative

C[fs, fr] = ⌫sr
@

@v


(v � usr) fs + v2t,sr

@fs
@v

�
,

usr v2t,sr

is conservative by construction.

Interested in      ? the linearized form of this operator is also conservative�f



a range of      .
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H-theorem of multi-species Dougherty  
collisions proven for special cases

C[fs, fr] = ⌫sr
@

@v


(v � usr) fs + v2t,sr

@fs
@v

�
,

One can show the entropy      satisfies

@S
@t

=
X

s
r 6=s

⌫sr
v2t,sr

Z 1

�1

1

fs

⇥
F 2
sr � Fsr · (v � usr) fs

⇤
dv

S

Although we have not shown this is in general        , we can prove:

•            if         are Maxwellian. 


•                                              for arbitrary        when

Ṡ � 0 fs,r

fs,r�
X

s
r 6=s

⌫sr
v2t,sr

Z 1

�1
Fsr · (v � usr) dv � 0

us = ur, �s = 1, �  1

Ts = Tr, �  0
�s

and

� 0

Fsr
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Discontinuous Galerkin operator uses 3 key methods1

Seek discrete solutions with the modal representation
fhfh =

X

k

fk k

e.g. for 1x2v, piecewise linear

 k 2
r

3

8

⇢
1p
3
, x, vx, vy,

p
3xvx,

p
3xvy,

p
3vxvy, 3xvxvy

�

1. Weak equalities: In the interval   , weak equality of two functions is defined as

f
.
= g ()

Z

I
(f � g) k dx = 0

I

e.g. given                  compute the flow velocity via

) Invert this linear system to get

the        expansion coefficients.um

X

m

um

Z

I
M0 k m dx =

Z

I
M1 k dx

M0, M1 uM0
.
= M1

1Hakim, Francisquez, Juno, Hammett (2019), Conservative Discontinuous Galerkin 
Schemes for Nonlinear Fokker-Planck Collision Operators. arXiv:1903.08062.

https://arxiv.org/abs/1903.08062
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Discontinuous Galerkin operator uses 3 key methods

2. Recovery DG: After 2 integrations by parts our scheme is
Z

⌦i,j

 k
@fh
@t

dx dv =

Z xi+1/2

xi�1/2

⇢
 k


(v � u) fh + v2t

@fh
@v

�
� @ k

@v
v2t fh

�vj+1/2

vj�1/2

dx

�
Z

⌦i,j


@ k

@v
(v � u) fh � @2 k

@v2
v2t fh

�
dx dv

Need derivatives of      at cell boundaries, but      is discontinuous there. 

E.
 S

hi
, P

hD
 th

es
is

 2
01

7.

fL fR

Consider two adjacent cells
Given adjacent solutions,       and      , of 

order    , construct the recovery polynomial

fL fR

f̂ =
2p�1X

m=0

f̂mxm with
f̂

.
= fL

f̂
.
= fR

p

fhfh

which is continuous at cell boundaries. It can 

be replaced for      in the discrete scheme.fh
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Discontinuous Galerkin operator uses 3 key methods

3. Boundary corrections: In a finite velocity space, momentum conservation is 

seen by setting              in our discrete scheme and summing over all the cells: k = v

X

i,j

Z

⌦i,j

v
@fh
@t

dx dv =
X

i,j

Z xi+1/2

xi�1/2

(
v

"
(v � u) fh + v2t

@f̂h
@v

#
� v2t f̂h

)vj+1/2

vj�1/2

dx�
X

i,j

Z

⌦i,j

(v � u) fh dx dv

use a continuous-across-cells 
form of this flux and zero-flux BC.

Incorporating energy conservation reveals one must compute               via

X

i

Z xi+1/2

xi�1/2

✓n
�v2t f̂h

ovmax

vmin

dx�M1 + uM0

◆
dx = 0

n
v2t f̂h

ovmax

vmin

+M1 � uM0
.
= 0

n
vv2t f̂h

ovmax

vmin

+M2 � uM1 � v2tM0
.
= 0

u & v2t

a linear system inverted

in every cell.
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Benchmarks show exact discrete conservation

�M (Mj) =

����
Mj(tfinal)�Mj,M

Mj(t = 0)

����

1X3V loss cone relaxation with piecewise linear basis and 16x323 cells.

Number, momentum and energy density 
errors are machine precision.



�15

Benchmarks show exact discrete conservation1

1X1V uniform distribution                                              with 16 (piecewise linear) 

or 8 (piecewise quadratic) cells.

f(x, v) =

(
1/(2v0) |v| < v0
0 |v| � v0

entropy change

Energy density errors remain machine precision, and entropy 
monotonically increases. This is also true for piecewise linear basis!

1Hakim, Francisquez, Juno, Hammett (2019), Conservative Discontinuous Galerkin 
Schemes for Nonlinear Fokker-Planck Collision Operators. arXiv:1903.08062.
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Vlasov-Dougherty solver validated with analytics

Here we show Landau damping of a Langmuir wave initialized with

fe(x, v, 0) =
1p
2⇡v2te

exp
⇥
�v2/

�
2v2te

�⇤
[1 + ↵ cos (kx)]

Scaling of damping rate with collisionality follows analytic theory8.

8Anderson, PoP 14 (2007).
see P3.013 J. TenBarge: magnetic pumping benchmark.

1Hakim, Francisquez, Juno, Hammett (2019), Conservative Discontinuous Galerkin 
Schemes for Nonlinear Fokker-Planck Collision Operators. arXiv:1903.08062.

https://arxiv.org/abs/1903.08062
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Discrete multi-species Dougherty has similar subtleties

In finite velocity space there is no closed form solution for        ,         .v2t,srusr

One must include velocity boundary corrections and invert the linear system
simpler still

me⌫eiM0euei �me⌫eiv
2
tei {fe}

ve,max

ve,min

+mi⌫ieM0iuie �mi⌫iev
2
tie {fi}

vi,max

vi,min

.
= me⌫eiM1e +mi⌫ieM1i.

(231)

me⌫eiM1euei +me⌫ei
⇣
dvM0e � {vfe}ve,max

ve,min

⌘
v2tei

+mi⌫ieM1iuie +mi⌫ie
⇣
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⌘
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.
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(232)
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2
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2
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vi,min

.
= me⌫eiM1e �mi⌫ieM1i �me⌫ei�e (1 + �) (M1e �M1i)

(233)
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⇣
dvM0e � {(v � ue) fe}ve,max

ve,min

⌘
v2tei

�mi⌫ie (M1i � uiM0i)uie,i �mi⌫ie
⇣
dvM0i � {(v � ui) fi}vi,max

vi,min

⌘
v2tie

.
= me⌫ei (M2e � ueM1e)�mi⌫ie (M2i � uiM1i)

�me⌫ei�e
1 + �

mi +me


me (M2e � ueM1e)�mi (M2i � uiM1i) +

1

2
(me �mi) (ue � ui) (M1e �M1i)

�
.

(234)

37
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Relaxation between two species remains conservative

Relaxation of two 
species on a 322 
grid.
ur

us
= 25

Tr

Ts
= 2

mr

ms
= 20
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Thanks for reading! Here’s a recap:

• Conservative implementation of self-species and multi-species collisions with a 

Dougherty operator is accomplished in Gkeyll’s discontinuous Galerkin scheme.

• A suite of weak equalities, recovery DG, and boundary corrections needed to 

achieve desired properties.

• Benchmarks and comparison with analytic theory show a satisfactory 

implementation of self-species collisions.

• Work is ongoing further exploring the H-theorem and physical properties of the 

multi-species Dougherty collision operator.


