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Numerical Challenges with Kinetic Electrons

*  Modern tokamak GK codes treat electrons kinetically (gyrokinetic or drift-kinetic), which introduces
numerical challenges including:

* Electrostatic models can generate the high-frequency “omega-H” mode (ES limit of the shear

Alfvén wave) — 40 m; k”
wn =0 R

* Cancellation issues at long wavelengths; more problematic in particle codes
* Electromagnetic models regularize ““omega-H” but have their own challenges at long A:

Hamiltonian (p) formulation : Symplectic (vy) formulation :
s B ! gs 04
P == (Vo= Vidy) + . = (v,¢+ | B
2
-Vi4+ (Z W) Ay = #ozqs/l’nfsdpu ~Vi4) = quqs/v”fsde
Large, non-physical current in Ampére must cancel in RHS Partial time derivative in particle equations of motion

* Several specialized numerical techniques have been developed over the years to mitigate these
issues, but rigorous numerical analysis is often lacking

*  There are numerical problems that remain in the infinite particle, At — 0 limit: focus of this poster
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The Gyrokinetic Finite-Grid Instability for PIC

There is a severe issue which has not generated much discussion in the past :
The Gyrokinetic Finite-Grid Instability

* Can be concealed by temporal instabilities due to wy , however, there are two key distinctions :

1. The finite-grid instability is unique to PIC, i.e., it will not be present in continuum codes

2. The finite-grid instability persists at arbitrary spatial and temporal resolutions

*  Some history :

*  G. Wilkie and W. Dorland, PoP (2016): Converged instabilities shown to exist in minimal electrostatic GK §f PIC

*  B. McMillan, PoP (2020): This is just a manifestation of the well-known aliasing instability that requires us to
“resolve the Debye length” in Vlasov-Poisson PIC; Instability is present in gyrokinetic full-f PIC as well

*  The possibility of such an instability was alluded to in the early days of GK PIC : W. W. Lee, JCP (1987)

and 4x, are coupled through w,. Following the previous derivation based on the
NGP scheme, we can show that the largest growth occurs at k|, 4x, = n/1.4 for
k,p,=0.21 regardless of the size of Ax,—a rather unique feature. Numerical

*  Our own studies with implicit V|| electromagnetic gyrokinetics see converged instabilities for certain parameters

*  Recently, rigorous numerical analysis has shown that finite-grid instabilities in Vlasov-Poisson PIC can be
tamed by using energy conserving interpolations : D. Barnes and L. Chacén, CPC (2021)
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Aliasing in the Particle-in-Cell Method

Both grid and particle quantities are present in PIC
Particles can support many modes that cannot be represented on the grid— alias to grid modes

Aliasing problem can exist in infinite particle limit

density
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Aliasing in the Particle-in-Cell Method

*  Derivatives of aliases can look like they have the wrong sign when restricted to the grid

qg<0 kq:k_QT"q q>0

Ax

Alias and grid modes :

Sampled alias

derivative ~__ [I" [|

&
\
\

Derivatives :

Grid mode
derivative
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Momentum vs. Energy Conserving PIC @ 6

Naming conventions due to shape function symmetries that help
ensure conservation of momentum or energy in ideal PIC models

Momentum Conserving : Energy Conserving :
p  Shape function symmetry between
P = > piEj charge density and potential
j

=%Z Pj Pj
j

- Equivalently, between current
density and electric field

*  Deposit charge density with same
shape function as used to
interpolate electric field to particles

—WE——AIZ J,E;
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Finite-Grid Analysis for Momentum Conserving Vlasov-Poisson PIC %)

A. B. Langdon, JCP (1970)

Plane wave ansatz for grid quantities :

E — p symmetry:
%‘(t) ~ ez’(kA:nj—wt)

1
pj:A_:BZ pS(z;
P 21.—2r71 W
-1 s ) -

Ep= Z E;S(zj — xp) /4 T

(%)2 Wrong sign for q >0 Strength of coupling
¢ 2mq
¢J+1—2¢J+¢3+1 e kq:k-_A_
Az? Pi z
: . T . [ kAz m+1
B _%i+1— ¢g 1 . _ Sin(kAz) . 4sm2(k_§_) . 2sin( 422
; SAx Az BT “kbz)
2 o o o o o
Up = _HE Kkg~ —% ... but positive semi-definite property is
‘ not preserved
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A Minimal Drift/Gyrokinetic Electron Model

-t
Ly 1< B
o 0 e 0
Lt~ f.—F .= ¢
ar et uIg fe— Ilav”f 0
/ fedv  Tjje= / V)| fedv
GK Poisson : Ampeére :
no; O 1 0A
BT;O a¢2 qino; — €Ne _%W;l:%nwi_er”e
. . . a a
Electric field with Ej|=—5-¢— 54

inductive component :

The Gyrokinetic Finite-Grid Instability

Cold Dispersion analysis : Shear Alfvén Wave

v \l\ ||

\/l d2k?

Electrostatic limit (8, — 0) : Omega H mode
m; k)

/1,()7)(,,.'1‘,,
B(z) me kJ.

‘,/3(. = Wy = :*:Qz

Modes are physically stable. With finite
temperature they are Landau damped.




Analysis of a momentum-conserving scheme

Semi-discrete plane wave ansatz :
P
1 (+) ~ pt(kAZj+E L y—wt)
oT; ZA_zZ wp Vp S(2j — 2p) ¢J(t) €
P
= E;S(zj—z — (l | emi 5 w? 2271 @ —
0 EJ: #55 = 7) eldy=1— k3 22 ah kqimeﬁev(?)IS(kq)l & Z(\/?qulv)

_______4____

Sign issue from electrostatic potential

Analogy to Vlasov-Poisson PIC: McMillan PoP (2020)

2m
o=k 5y

1 _ w
kw)=1———Y kkq|S(ke)|’k, °Z’ =0
) =1 g el (mkqlve)

o o [ EAZ\[ AD
k | ps plays the role of K)\D—Qsm( 5 ><Am>
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Analysis of a Yee-lattice energy-conserving scheme )

¢ D.Barnes and L. Chacdn, CPC (2021) analyzes in detail the finite grid effects for Yee-lattice energy-
conserving Vlasov-Poisson PIC
. H.R. Lewis, JCP (1970), G. Chen et al., JCP (2011), L. Chacén et al., JCP (2013)

*  Yee-lattice energy-conserving schemes can be implemented for idealized meshes, but not easily applicable
for existing tokamak simulation codes

Momentum Conserving Yee-lattice energy-conserving

1 L -
=1 . 21.—2771 =1—— “Z =
) =1~ 3 S el S0k 72 el =1~ g S SR ) =0

No sign issue here!

*  Adiscrete derivative on the grid is replaced by a derivative in the Lagrangian frame —> consistent signs
Yee-lattice energy-conserving is absolutely stable for stationary Maxwellian

Stable for drifting Maxwellian for Mach number below order 1

*  But... relies on analytical properties of shape functions -> not easy to implement for complicated meshes
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A new co-located energy-conserving scheme

*  We have developed a new scheme that obtains density from the continuity equation?

*  Allows all quantities to be co-located on a mesh
*  Preserves sign in dispersion relation and is practical for fusion PIC codes 1

Instead of depositing density from marker particles : o

1. Deposit flux density from marker particles

2. Advance density forward in time on the grid using the continuity equation

or'; = Res Z WpUpS(2j — 2p)

p

,—5nj = — Z Dj‘[(il“[,
ot l

3. Use density from continuity equation in Poisson’s equation

*  Similarities to the vorticity equation formulation
*  Applied to our drift/gyrokinetic electron model :

1 em; ., w? _ w
kF)=1— —— 2 — g k)2k 727 —=—— =0
e(w, k) QkEpE; ([Z Qimeﬂ ’Ug)IS( o) kq (\/?|kq|ve>

\

No sign issue k=K — 274
Az
here!

*  Aderivative in the Lagrangian frame is replaced by a discrete derivative on the grid —> consistent signs
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1B. Sturdevant and L. Chacon, “Eliminating Finite-Grid Instabilities in Gyrokinetic Particle-in-Cell
Simulations”, submitted to J. Comput. Phys.




Investigation of the Numerical Dispersion Relations

Dispersion analysis for electrostatic ( 3. =0 ), stationary plasmas
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Predicted stability region for the
momentum-conserving scheme
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foe = e e—?-”f
Oe — - TE
2TV,

The momentum-conserving scheme has
unstable regions in the parameter space
shown to the left.

Note: the unstable regions are
independent of numerical
resolution

The same analysis shows the co-located
energy-conserving scheme to be
absolutely stable over the same
parameter space.




Investigation of the Numerical Dispersion Relations @

Dispersion analysis for electrostatic ( 5. =0), drifting plasmas

Momentum-conserving Co-located energy-conserving
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*  Another type of finite-grid instability can be present in drifting plasmas
*  With co-located energy-conserving scheme, this is generally harmless for plasmas of interest
*  Stable for electron Mach numbers < 1

*  Similar results were found in Barnes and Chacén, CPC (2021) for Yee-lattice energy conserving schemes in Vlasov-
Poisson PIC
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Investigation of the Numerical Dispersion Relations

Dispersion analysis for finite - 5. , stationary plasmas

Maximized over kAz

0.2

0.15 Stable

Predicted stability regions for the
momentum-conserving scheme
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The co-located energy-conserving scheme is again
found to be absolutely stable.

Finite beta helps stabilize the momentum-
conserving scheme but does not eliminate
instabilities. At high beta, numerical growth rates
are inversely proportional to beta.



Simulation Results

Stationary Electrostatic Simulations

0.8 1 . . .
LT T T e oo 16 Timestep size is chosen to resolve wgy
ol | S e oo 08 frequencies for all values of k| Az € [—m,7].
osl . In particular, we choose:
=) ’ \
> ) _Ve At _
/qz: 04r o\\ k_]_ps AZ —_— 0.128
3 o03f .
E Ll A large number (1 x 104) of particles per
ol . cell is taken to isolate the effects of the
obeee | I IR TV finite-grid instability from particle noise
o1 0.05 01 015 02 .
| K | Parallel resolution: 1, = 64

Comparisons of measured growth rates from
simulations to growth rates predicted from the
numerical dispersion relations.
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Simulation Results 9 16

Electrostatic Simulations with Finite Mean Parallel Velocity

6 i 1 1 1 1 I 1 1 1 ;
Right: Comparisons of measured growth rates _ - 2
from simulations to growth rates predicted . &-~
from the numerical dispersion relations. -
-
-
— v 4 X |
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N ,
. . e .
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i 3
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Simulation Results

Electromagnetic Simulation Results
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Demonstration in XGC
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Figure: Shear Alfvén waves are excited from an initial
perturbation in XGC. With the momentum-conserving scheme
(left), the finite-grid instability, characterized by long
wavelengths in the poloidal plane, quickly develops. The co-
located energy-conserving scheme (right) allows for clean,
numerically stable simulations.

Preliminary results with a fully implicit
electromagnetic version of XGC! show
the existence of the finite-grid instability
and the effectiveness of our new scheme
to eliminate it.

1B. Sturdevant et al., Phys. Plasmas, Vol. 28, No. 7, 072505
(2021)
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Connection to other schemes used in fusion PIC codes

* J.Bao, Z. Lin, and Z. X. Lu, A conservative scheme for electromagnetic
simulation of magnetized plasmas with kinetic electrons”, PoP (2018)

* Reformulation in GTC using continuity equation gives much cleaner
simulation results, although their motivation was different (cancellation

issue)
1kp, =42 & Ax/d, =12 I/kp, =208 & Ax/d, =62 Vkp, =41.5& Ax/d, =12.5
—W/0 contiﬁuity Eq. ’ ’ ’ [—wi0 contiﬁuity Eq. ’ ’ ’ —W/O contiﬁuiw Eq.fAmplitu&e'0.00Si
N/ continuity Eq. =N/ continuity Eq. = \\/ continuity Eq.
P 05 05
3 o /\/\/\/\/ |
S 05 -05
il APEEN il APTEN L PN
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—~ 0 10 i
1 -1 -1

3
-4 = From kinetic markers
=== From continuity Eq.
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Connection to other schemes used in fusion PIC codes :

reformulation used in the split-weight scheme

*  Original split-weight paper :

dw 1 déh, 1-wM [ 3 ed
PHYSICS OF PLASMAS VOLUME 7, NUMBER 5 MAY 2000 dt N I_: di N 1+e d)/'l.,. L - ;; T
ed\caddp . vy 9 [ed)\?
The split-weight particle simulation scheme for plasmas (T E ety ) |

Igor Manuilskiy and W. W. Lee (15)

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

However, serious numerical instabilities may arise from Eq.

. . . . . . (I5) because of the existence of time derivatives on both
°
Refo rmUIat|On IS to aVOId USIng a tl me dlffe renced sides of the equation. Although for a different reason, this
H : H H situation is similar to the problem of Darwin model for non-
pOtentIaI In the Welght eq uatlon radiative simulation encountered by Nielson and Lewis.* To

avoid the numerical difficulty, we first take the partial time

° HOWEVEF, thiS aISO haS the Effect Of mOV|ng a derlvatlve dcri\‘;lli\‘c of Eq: (5) ;lnq suh.stilulcv the (m‘n"/ﬂ{ term by
|n the Lagranglan frame tO the grid, Whlch Would be using the continuity equation from Eq. (1) to obtain
beneficial for avoiding finite grid instabilities

. . . . . N ded t7(51l‘, 171511, c do "

*  Could partially explain why split-weight scheme is AV ST T 5 B
more robust in handling omega-H and is better for
cancellation issue

sed

2 202
~ﬂ:(,;‘\‘_7—.:]. (17)
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Connection to other schemes used in fusion PIC codes :

reformulation used in the split-weight scheme

*  Y.ChenandS. E. Parker, JCP (2007) Split-weight and cancellation paper

been demonstrated numerically, and is not well understood. A prominent feature
of the split-weight scheme is the extra field equation for the rate of change of the
electric potential, ¢. While in the continuum limit, i.e. with vanishing grid size
and time step, and infinite number of particles, solving both the quasi-neutrality
condition and the equation for ¢ is redundant, the two equations are not
consistent on the grid scale, due to the use of finite grid sizes. In this paper, we
show that the key to the efficacy of the split-weight scheme is this inconsistency,
which tends to suppress grid-scale numerical instabilities.

*  Toinvestigate numerical properties of the split-weight scheme, an equation for 5;_¢ is derived directly
from discretized GK Poisson t

. 5B, . 38
to= 5537 ((ve + 0 %), i e ) Stx =)+ & 39

> ALVJ_(wj + e47P(x;,t)) v, - VS(x — x;) + ion terms,

*  @Grid scale instabilities were found with this formulation but not when continuity form is discretized
directly. This is consistent with our findings.
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Summary and Conclusions o)) -2

We've gained new insights into an instability plaguing gyrokinetic PIC simulations and have found
a simple solution by reformulating the discrete equations using the continuity equation. This work
can provide direction for further GK PIC algorithm development.

*  Finite-grid instabilities show up in unusual ways in drift/gyrokinetic electron PIC models
* Numerical analysis and aliasing theory can be powerful tools for understanding and designing
GK PIC algorithms

*  With certain shape function symmetries, finite-grid instabilities can be eliminated for
parameter regimes of interest in both electrostatic (omega-H) and electromagnetic (Shear
Alfvén wave)

*  The present numerical analysis could help understand why some PIC schemes have been
more successful in simulating tokamak plasmas.

It is interesting to look back on previously successful schemes with this new perspective. Future
studies could be done to give a more complete understanding — what is the role of the finite
timestep size, particle noise, how does this show up in p,; formalism, etc ?
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