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1 Publications in this project so far

e 2015: Dewar, Yoshida, Bhattacharjee & Hudson, J. Plasma Phys.
(d0i:10.1017/50022377815001336) “Variational formulation of
relaxed & multi-region relaxed magnetohydrodynamics™

Used only entropy and magnetic helicity as global constraints — gives only
Euler flow dynamics (i.e. flow and magnetic field not coupled)

e 2020: Dewar, Burby, Qu, Sato & Hole, Phys. Plasmas
(d0i:10.1063/5.0005740) “Time-dependent relaxed
magnetohydrodynamics — inclusion of cross helicity constraint using

phase-space action”.

Added cross helicity constraint to couple fluid and magnetic (‘ie/d but did not enforce
IOL — gives Relaxed MHD (RxMHD) dynamics which can violate Ideal Ohm’s Law (IOL)

e 2022: Dewar & Qu, “Relaxed Magnetohydrodynamics with Ideal
Ohm's Law (IOL) Constraint” (doi:10.1017/50022377821001355)

J. Plasma Phys. 88, 835880101-1--37 Introduced IOL equality constraint

functional C = E + vXB, and suggested an iterative algorithm for

finding the corresponding Lagrange multiplier

http://dx.doi.org/10.1017/S0022377821001355



http://dx.doi.org/10.1017/S0022377821001355

2.1 Motivation, questions, background

Summary

 Want a dynamical generalization of the magnetostatic Relaxed MHD
(RXMHD) approach used in the Stepped Pressure Equilibrium Code (SPEC)

* Also want to be able to treat continuous transitions between magnetostatic equilibria
as a special case (embed relaxed magnetostatics in a more general framework)

* Find a formulation of a time-dependent quasi-relaxed MHD (QRxMHD)
relaxed sufficiently that reconnection is allowed, but such that final relaxed
steady-flow states can be made consistent with IOL: E +uxB =0

e Use variational Hamiltonian mechanics framework — get dynamics from
Hamilton’s Action Principle 6§ = 0

* Proposed solution — satisfy IOL almost everywhere in X, t (“almost” to
allow reconnection where needed) using augmented Lagrangian method



2.2 QRXxMHD applications: SPEC with cross-field flow &

physical kinetic energy; Fast, well-posed replacement
SPEC is based on MRxMHD: M stands for Multiregion,

Rx stands for Relaxed: ..D stands for Dynamics

e —

Q)
Typic\al'/

relaxation
domain :
annular
torus

-

o Zhisong Qu has already developed a
preliminary extension of SPEC for limited
class of field-aligned steady flows — how
can we include cross-field flows?

o Arunav Kumar has used SPEC Hessian with
a model kinetic energy based on ¢ function
density concentrated on interfaces — how

0() do the interfaces “feel” the inertia of the

Boundary  relaxed plasma?

defined by o Beyond SPEC? — If we find a fast method
two ideal-  for calculating reconnected 3-D equilibria
MHD with pressure and potential profiles will we
interfaces  need to postulate interfaces at all? >



2.3 Ideal MHD (IMHD: IOL pointwise, E + uxB = 0)

e Conventionally, we take the curl of IOL and eliminate E using the
Maxwell-Faraday eq. VXE + d;B = 0, giving

* ;B = VX(uxB)

* Magnetic field lines are advected by the fluid in with no
change in topology: loops map to loops, invariant tori map to
invariant tori, threaded by conserved magnetic fluxes: the
“frozen-in flux” property p = no reconnection — too
restrictive for development of islands in 3-D equilibria

* Works with current density calculated from ] = VXB /uy — no
displacement current: “pre-Maxwellian” (Grad)

* Fluid equation of motionis p Z—? = —Vp + JXB



2.4 History: Variational derivation of IMHD

* Most elegant way: unite fluid and and electrodynamics with a variational formulation

similar to optimization
2 BZ
* Use MHD Lagrangian density LMHP = p; — yp1 — o in Hamilton’s Principle of
- 0

Stationary Action § = [[, LMIP d3xdt

* Find a stationary “point” of the action, 6§ = 0,

subject to

e |deal Ohm’s Law constraint E + uxB =0 (IOL)
* Maxwell’s equations [except Ampére’s law is pre-Maxwell and Poisson’s equation is
replaced by V- E = =V - (uxB)]
* Local mass and entropy conservation
References
1. Lagrangian picture: W.A. Newcomb, Nucl. Fusion Suppl. Part 2, 451-463 (1962)
2. Polarization representation: M.G. Calkin, Can. J. Phys. 41, 2241-51 (1963) — see later
3. Euler-Poincaré framework: V. Arnold Ann. Inst. Fourier, Grenoble 16, 319-361 (1966)
[fluid only, later did MHD with Khesin]




3.1 Canonical Phase-Space Lagrangian (PSL) density

Legendre transformation from a Hamiltonian to a Phase-Space Lagrangian:
2

2 . .
L =n-v—=—-2 _ 2 (+ constraint terms in RxMHD)
20 y-1  2p

where Tt - v is analogue of pq in finite-dimensional mechanics:

* Tt is canonical momentum density

v is fluid velocity field with respect to Lagrangian reference
frame (possibly moving in a reference flow)

* B = VXA is magnetic field, ygy is vacuum permeability

* p and p are mass density and pressure fields

Use L®* to form total MHD action § = [, £ d*xdt and
find Hamiltonian equations as Euler—Lagrange equations from
Hamilton’s Principle 6§ = 0, withdv =0, + Vv -V - & - Vv
and 6p = -V - (p&) (Newcomb 1962)



3.2 Noncanonical RxMHD PSL density (Burby)

LRX=Pu-V—pu2— p__ B
2 y—1 2y

P p\ A-VXA u-VxA

+1 1ln K—)+u i + v + L10L
Y — P Ho Ho IOL constraint
Entropy Magnetic helicity  Cross helicity — see later
constraint constraint constraint

where we have made the noncanonical transformation
T = pu, with

* u the lab-frame fluid velocity, v the fluid velocity
relative to a reference flow (see EL equations), and

* 7, U, and v are Lagrange multipliers for entropy,
magnetic helicity and cross helicity, respectively



3.3 Relaxed MHD dynamics as an “Optimization”
Problem

stat S under variations ou, op, 0P, A & & subject to equality constraints:
»1V-B=0
»2 0:;p+ V- (pv) =0 (local mass conservation & &p = —V - (p¢))
» 3 Sq = const (global entropy* conservation) Lagrange multiplier T
» 4 Kn = const (global magnetic helicity * conservation) Lagrange multiplier u
»5 KQ const (global cross helicity* conservation) Lagrange multiplier v
»6 ||C|| = 0 (L? norm — weak IOL) Lagrange multiplier field A(x, t)
»7 VXE+0;B=0
Satisfy #1 & #7 using B = VXA, E = —V® — J,A.

*Global Ideal MHD invariants: (Satisfy using global Lagrange multipliers.)

Sq = fﬂ y_lln( py) dV; Ko= —f A - VXA dV (magnetic helicity)

Ké = Efﬂ u - VXA dV (cross helicity); and C = E + uxB (IOL)

See next slide for more on constraint #6



3.4 Augmented Lagrangian method for weak IOL

* Pointwise constraint C(x,t) = 0 implies infinity of constraints
whereas single weak constraint ||C|| = 0 is computationally
more practical:

* Augment Lagrangian with a Lagrange multiplier field A(x, t) and
a scalar quadratic penalty function: add constraint term

L0 = 3y - € — —ppC?

to Lagranglan density, where C = E + vXB is the constraint
function, ,u > 0 is the penalty multiplier, and k € Z is an
iteration index:

Starting from an initial guess A, and an efficient choice of ,ug,
solve the corresponding EL equations for E, u & B at each step to
get C;, and update A, using the rule (see e.g. Nocedal & Wright's
text on numerical optimization)

Ars1 = Ay — urCy (for later use denote RHS by A},)



EL = Euler-Lagrange

4.1 EL equations from PSL action principle (w/o IOL)

e Use phase-space action principle § [ dthLRXd3x =0

* p variation: ﬁ(l — T%) =0 = p = 1p (isothermalin () (1)
* uvariation: pv = pu — i B (see next slide) (2)
* A variation: ugJ = VXB = uB + v VXu (generalized Beltrami eqn.) (3)
e &variation: d;(pu) = p(Vu) - (v—u) — V- (pvu + pl) (4)
»> V :(2) gives V- (pu) = V - (pv), so v continuity implies u continuity:

dep+V-(pu) =0 (5)
» Using (2) to eliminate v in favor of u in (4) gives equation of motion

p(d; +u-V)u=-Vp+j,xB (6)

. 0% % . . . .
where = — = — w, a vorticity driven current and centrifugal term
h w u0V><u uow ticity d t and trifugal t

u - Vu make static relaxed solution no longer force-free in usual sense.



4.2 EL equation (2) relates u and v flows

Newcomb:
vB — OV constrained to §
ulkx = —
0 & Lagrangian flow
“0 v
= el oA \ .
T SRS % Euler-Lagrange equation (2)
. —ETRSEITREEZ R h
Eulerian flow ”h&QXé’Q?’Q\\\ u > SNOWS
InPSLdou ”I’I’";:g:;"i\\\%\ Sy Total — uRX TV
n u/_s '0&‘\\\§§\\ 2 g u=
unconstrained AN i

Iy relaxed flow,
parallel to B

Cross Helicity conservation constraint
generates a (non) canonical
transformation to local frame of each
fluid element in a field-aligned, mass
conserving flow field u"™*(x, t). A
physically valid representation because
of the “hidden” relabeling symmetry that

gives conservation of cross helicity? 513



4.3 EL equations with IOL

u and p variations are unaffected, but IOL Lagrange
multiplier adds new terms in Euler—Lagrange equations:

Comparison with Calkin 1963 identifies A’
with polarization vector P

!/
A variation: ] = =B _Lp v Vx(u+w)+ai+V><(A’><u)
Ho Ho Ho

® variation: V- 1" = 0 where 2’ = 1 — uC — next iterate for
A. Hence all typical A s satisfyV-A=0andV- C=0

& variation: d.u + (VxXu)xv=-Vh —a,

Where, for conciseness we have defined Bernoulli head

2

=—+7ln>
2 Pa
__ BxA' _
and w = and a; =dw+v-Vw+ (Vv)-w

p 514



5.1 Magnetostatic force balance (with IOL)

* For simplicity consider magnetostaticcase d; ‘= 0,u =0,s0oC = E
e V-C=V-.E=-V?d = 0. Boundary condition is ® = const on
d(), hence throughout (), including boundaries, so E = —V® = 0.

* l.,e.C =0and A’ = 4 — iteration already converged! Thus any

initial guess satisfying V- 4 = 0 is already feasible.
* |.e. converged A is not unique, it depends on initial guess

* Using EL equations on previous slide we can also show that ideal

force balance Vp = JXB is satisfied, with J = MLVXW. Thus
0

* the IOL constraint allows finite pressure gradient — Vp # 0



5.2 General force balance (with IOL constraint term)

* As A is held fixed while solving the augmented EL
equations the momentum equation acquires residual
force terms (iteration subscript k implicit):

dt(pu) + V- (Tyup + Tres) = (VA) - C

_ B*
where TMHD = puu + (p + 2}10) I,

— ' C — 27 . lPZ
Tres = (A C— A" uxB + - ufC? )1

+ BA'Xu + uBxA' + A'uxB

* Clearly the RHS residual (VA) - C - 0as C - 0 in the
iteration, but it is not clear Tges = 0 when u # 0 unless
we can show BXA" — 0 (i.e. A’y — 0) (still a TODO)



6.1 Family of local QRxMHD dispersion relations

e Can we construct a Quasi Relaxed MHD (QRxMHD) family of

magnetofluid models continuously connecting Relaxed MHD
(RXMHD* — no I0L) with Ideal MHD (IMHD — exact IOL)?

* Introduce relaxation parameter eg, such that eg, = 1 gives
RXMHD and egy, = 0 gives IMHD

* Look at plane-wave or WKB dispersion relations for the
three MHD wave branches: Alfvén waves, slow
magnetosonic waves and fast magnetosonic waves

*R.L. Dewar, JW. Burby, Z.S. Qu, N. Sato and M.J. Hole, Phys. Plasmas 27,
062504-1--22 (2020)



6.2 Alfvén wave dispersion relations

det D = 0, principal Alfvén root

w
4.5|

erx = 0 dispersion relation agrees with standard textbook IMHD dispersion relation

S18



6.3 Slow magnetosonic dispersion relations

det D = 0, principal slow MS root

w

erx = 0 dispersion relation agrees with standard textbook IMHD dispersion relation

S19



6.4 Fast magnetosonic dispersion relations

det D = 0, principal fast MS root

w

st IMHD Er
: —5 1)
4f
SRS 0.25
3 0.5
2 ()75
1‘ RxMHD 1
—_— Ki
05 0.5

erx = 0 dispersion relation agrees with standard textbook IMHD dispersion relation

S20



7 Two references on the Augmented Lagrangian method

Optimization theory:
Lagrange Multiplier

* Provides a standardized Approach to
language for precisely stating ;’ﬁ:;a;',;’,;‘.?c';:{g,?s'e"‘s
problems

R * Provides a toolkit of practical
Optimization algorithms for tackling such
problems Kazufumi Ito

Karl Kunisch

@ Springer

“This comprehensive monograph
analyzes Lagrange multiplier
theory and shows its impact on
the development of numerical

A general text:

“One can trace its roots to the Calculus of Variations and
the work of Euler and Lagrange ... covers numerical
methods for finite-dimensional optimization problems. It
begins with very simple ideas progressing through more algorithms for problems posed in
complicated concepts, concentrating on methods for a function space setting.”

both unconstrained and constrained optimization.” S21



8 Conclusion

e Have constructed a formalism for dynamical Relaxed MHD that
generalizes Taylor relaxation by adding microscopic Mass conservation
and constraints of global Entropy and Cross Helicity to Taylor’s Magnetic
Helicity, plus a weak ideal-Ohm constraint

* Have proposed the augmented Lagrangian method as an efficient way
of implementing the IOL constraint (and mass?), derived the
corresponding Euler-Lagrange equations, and examined effect on
momentum equation

* Now need to implement in equilibrium and time evolution problems to
test the iteration method and show it provides a faster method of
allowing reconnection than a full physics code

* Then aim to apply to stellarator optimization as part of Simons Collab.

* Also apply Augmented Lagrangian methods in other applications?



