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1 Publications in this project so far

• 2015: Dewar, Yoshida, Bhattacharjee & Hudson, J. Plasma Phys. 
(doi:10.1017/S0022377815001336) “Variational formulation of 
relaxed & multi-region relaxed magnetohydrodynamics’’

Used only entropy and magnetic helicity as global constraints — gives only 
Euler flow dynamics (i.e. flow and magnetic field not coupled)

• 2020: Dewar, Burby, Qu, Sato & Hole, Phys. Plasmas 
(doi:10.1063/5.0005740) “Time-dependent relaxed 
magnetohydrodynamics — inclusion of cross helicity constraint using 
phase-space action”. 

Added cross helicity constraint to couple fluid and magnetic field but did not enforce 
IOL — gives Relaxed MHD (RxMHD) dynamics which can violate Ideal Ohm’s Law (IOL)

• 2022: Dewar & Qu, “Relaxed Magnetohydrodynamics with Ideal 
Ohm's Law (IOL) Constraint” (doi:10.1017/S0022377821001355)

J. Plasma Phys. 88, 835880101-1--37 Introduced IOL equality constraint 
functional 𝐂 = 𝐄 + 𝐯×𝐁, and suggested an iterative algorithm for 
finding the corresponding Lagrange multiplier
http://dx.doi.org/10.1017/S0022377821001355
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Summary

• Want a dynamical generalization of the magnetostatic Relaxed MHD 
(RxMHD) approach used in the Stepped Pressure Equilibrium Code (SPEC) 
• Also want to be able to treat continuous transitions between magnetostatic equilibria 

as a special case (embed relaxed magnetostatics in a more general framework)

• Find a formulation of a time-dependent quasi-relaxed MHD (QRxMHD) 
relaxed sufficiently that reconnection is allowed, but such that final relaxed 
steady-flow states can be made consistent with IOL:  𝐄 + 𝐮×𝐁 = 0

• Use variational Hamiltonian mechanics framework — get dynamics from 
Hamilton’s Action Principle 𝛿𝒮 = 0

• Proposed solution — satisfy IOL almost everywhere in 𝐱, 𝑡 (“almost” to 
allow reconnection where needed) using augmented Lagrangian method
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2.1 Motivation, questions, background



2.2 QRxMHD applications: SPEC with cross-field flow & 
physical kinetic energy; Fast, well-posed replacement
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o Zhisong Qu has already developed a 
preliminary extension of SPEC for limited 
class of field-aligned steady flows — how 
can we include cross-field flows?

o Arunav Kumar has used SPEC Hessian with 
a model kinetic energy based on 𝛿 function 
density concentrated on interfaces — how 
do the interfaces “feel” the inertia of the 
relaxed plasma?

o Beyond SPEC? — If we find a fast method 
for calculating reconnected 3-D equilibria 
with pressure and potential profiles will we 
need to postulate interfaces at all?

SPEC is based on MRxMHD:  M stands for Multiregion, 
Rx stands for Relaxed; ..D stands for Dynamics

Ω 𝜕Ω
Typical 
relaxation 
domain : 
annular 
torus

Boundary 
defined by 
two ideal-
MHD 
interfaces



2.3  Ideal MHD (IMHD: IOL pointwise, 𝐄 + 𝐮×𝐁 ≡ 𝟎)
• Conventionally, we take the curl of IOL and eliminate 𝐄 using the 

Maxwell-Faraday eq. 𝛁×𝐄 + 𝜕!𝐁 = 0, giving 
• 𝜕!𝐁 = 𝛁×(𝐮×𝐁)
• Magnetic field lines are advected by the fluid in with no 

change in topology: loops map to loops, invariant tori map to 
invariant tori, threaded by conserved magnetic fluxes: the 
“frozen-in flux” property 𝑝 ⇒ no reconnection — too 
restrictive for development of islands in 3-D equilibria

• Works with current density calculated from 𝐉 = 𝛁×𝐁 /µ" — no 
displacement current: “pre-Maxwellian” (Grad)
• Fluid equation of motion is  𝜌 #𝐮

#!
= −𝛁𝑝 + 𝐉×𝐁
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2.4 History:  Variational  derivation of IMHD
• Most elegant way: unite fluid and and electrodynamics with a variational formulation 

similar to optimization

• Use MHD Lagrangian density ℒ!"# = $%!

&
− '
()*

− +!

&,"
in Hamilton’s Principle of  

Stationary Action  𝒮 = ∬- ℒ!"# 𝑑.𝑥𝑑𝑡

• Find a stationary “point” of the action, 𝛿𝒮 = 0,
subject to 

• Ideal Ohm’s Law constraint 𝐄 + 𝐮×𝐁 = 0 (IOL)
• Maxwell’s equations [except Ampére’s law is pre-Maxwell and Poisson’s equation is 

replaced by ∇ 1 𝐄 = −𝛁 1 (𝐮×𝐁)]
• Local mass and entropy conservation 

References
1. Lagrangian picture:  W.A. Newcomb, Nucl. Fusion Suppl. Part 2, 451–463 (1962)
2. Polarization representation:  M.G. Calkin, Can. J. Phys. 41, 2241-51 (1963) — see later
3. Euler-Poincaré framework:  V. Arnold Ann. Inst. Fourier, Grenoble 16, 319-361 (1966) 

[fluid only, later did MHD with Khesin] S7



3.1 Canonical Phase-Space Lagrangian (PSL) density

ℒ = 𝛑 $ 𝐯 − 𝛑!

"#
− $

%&'
− (!

")"
(+ constraint terms in RxMHD)

where 𝛑 4 𝐯 is analogue of 𝑝𝑞̇ in finite-dimensional mechanics:
• 𝛑 is canonical momentum density
• 𝐯 is fluid velocity field with respect to Lagrangian reference 

frame (possibly moving in a reference flow)
• 𝐁 = ∇×𝐀 is magnetic field, µ" is vacuum permeability
• 𝜌 and 𝑝 are mass density and pressure fields

Use ℒ%& to form total MHD action 𝒮 ≡ ∬' ℒ 𝑑(𝑥𝑑𝑡 and 
find Hamiltonian equations as Euler–Lagrange equations from 
Hamilton’s Principle 𝛿𝒮 = 0, with 𝛿𝐯 = 𝜕!𝝃 + 𝐯 4 𝛁𝝃 − 𝝃 4 𝛁𝐯
and 𝛿𝜌 = −𝛁 4 𝜌𝝃 (Newcomb 1962) 
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Legendre transformation from a Hamiltonian to a Phase-Space Lagrangian:



3.2 Noncanonical RxMHD PSL density (Burby)

ℒ!" = 𝜌𝐮 1 𝐯 − #$!

%
− &
'()

− *!

%+"

+ 𝜏
𝜌

𝛾 − 1
ln 𝜅

𝑝
𝜌'

+ 𝜇
𝐀 1 ∇×𝐀
2µ,

+ 𝜈
𝐮 1 ∇×𝐀
µ,

+ ℒ456

where we have made the noncanonical transformation 
𝛑 = 𝜌𝐮, with
• 𝐮 the lab-frame fluid velocity, 𝐯 the fluid velocity 

relative to a reference flow (see EL equations),	and
• 𝜏, 𝜇, and 𝜈 are Lagrange multipliers for entropy, 

magnetic helicity and cross helicity, respectively

S9

IOL constraint 
— see laterEntropy 

constraint
Magnetic helicity 
constraint

Cross helicity 
constraint



3.3  Relaxed MHD dynamics as an “Optimization” 
Problem

stat 𝒮 under variations 𝛿𝐮, 𝛿𝑝, 𝛿Φ, 𝛿𝐀 & 𝝃 subject to equality constraints:
Ø1 𝛁 1 𝐁 = 0
Ø2 𝜕/𝜌 + 𝛁 1 𝜌𝐯 = 0 (local mass conservation ⇔ 𝛿𝜌 = −𝛁 1 𝜌𝝃 )
Ø3 𝑆- = const (global entropy* conservation) Lagrange multiplier 𝜏
Ø4 𝐾- = const (global magnetic helicity * conservation) Lagrange multiplier 𝜇
Ø5 𝐾-0 = const (global cross helicity* conservation) Lagrange multiplier 𝜈
Ø6 𝐂 = 0 (L2 norm — weak IOL)  Lagrange multiplier field 𝝀(𝐱, 𝑡)
Ø7 𝛁×𝐄 + 𝜕/𝐁 = 0
Satisfy #1 & #7 using 𝐁 = 𝛁×𝐀,  𝐄 = −𝛁Φ − 𝜕/𝐀. 

*Global Ideal MHD invariants: (Satisfy using global Lagrange multipliers.)

𝑆* = ∫*
#
%&'

ln 𝜅 $
##

𝑑𝑉; 𝐾*=
'
")"

∫* 𝐀 $ ∇×𝐀 𝑑𝑉 (magnetic helicity) 

𝐾*+ = '
)"
∫* 𝐮 $ 𝛁×𝐀 𝑑𝑉 (cross helicity); and 𝐂 = 𝐄 + 𝐮×𝐁 (IOL)

See next slide for more on constraint #6 S10



3.4  Augmented Lagrangian method for weak IOL
• Pointwise constraint 𝐂(𝐱, 𝑡) = 0 implies infinity of constraints 

whereas single weak constraint 𝐂 = 0 is computationally 
more practical:
• Augment Lagrangian with a Lagrange multiplier field 𝛌(𝐱, 𝑡) and 

a scalar quadratic penalty function: add constraint term
ℒ)*+ = 𝛌, 4 𝐂 −

-
.
𝜇,/𝐶.

to Lagrangian density, where 𝐂 = 𝐄 + 𝐯×𝐁 is the constraint 
function, 𝜇/ > 0 is the penalty multiplier, and 𝑘 ∈ ℤ is an 
iteration index: 
Starting from an initial guess 𝛌" and an efficient choice of 𝜇"/, 
solve the corresponding EL equations for 𝐄, 𝐮 & 𝐁 at each step to 
get 𝐂, and update 𝛌, using the rule (see e.g. Nocedal & Wright’s 
text on numerical optimization)

𝛌,0- = 𝛌, − 𝜇,/𝐂, (for later use denote RHS by 𝛌,1 )
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4.1  EL equations from PSL action principle (w/o IOL)

• Use phase-space action principle 𝛿∫ 𝑑𝑡∫-ℒ
!"𝑑.𝑥 = 0

• 𝑝 variation:  )
'() 1 − 𝜏 #& = 0 ⇒ 𝑝 = 𝜏𝜌 (isothermal in Ω) (1)

• 𝐮 variation: 𝜌𝐯 = 𝜌𝐮 − /
+𝟎
𝐁 (see next slide) (2)

• 𝐀 variation: 𝜇,𝐉 ≡ 𝛁×𝐁 = 𝜇𝐁 + 𝜈 𝛁×𝐮 (generalized Beltrami eqn.)  (3)
• 𝝃 variation:   𝜕0 𝜌𝐮 = 𝜌 𝛁𝐮 1 𝐯 − 𝐮 − 𝛁 1 𝜌𝐯𝐮 + 𝑝𝐈 (4)

Ø 𝛁 1(2)  gives 𝛁 1 (𝜌𝐮) = 𝛁 1 𝜌𝐯 , so 𝐯 continuity implies 𝐮 continuity:

𝜕0𝜌 + 𝛁 1 𝜌𝐮 = 0 (5)
Ø Using (2) to eliminate 𝐯 in favor of 𝐮 in (4) gives equation of motion

𝜌(𝜕0 + 𝐮 1 𝛁)𝐮 = −𝛁𝑝 + 𝐣𝝎×𝐁 (6)

where 𝐣𝝎 = /
+𝟎
𝛁×𝐮 ≡ /

+𝟎
𝝎, a vorticity driven current and centrifugal term  

𝐮 1 𝛁𝐮 make static relaxed solution no longer force-free in usual sense. S12

EL = Euler-Lagrange



4.2   EL equation (2) relates u and v flows
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Newcomb:
𝛿𝐯 constrained to 𝛏

In PSL 𝛿𝐮 is 
unconstrained

𝐮$% ≡
𝜈𝐁
µ&𝜌

𝐮 = 𝐮!" + 𝐯

Cross Helicity conservation constraint 
generates a (non) canonical  
transformation to local frame of each 
fluid element in a field-aligned, mass 
conserving flow field 𝐮12(𝐱, t). A 
physically valid representation because 
of the “hidden” relabeling symmetry that 
gives conservation of cross helicity?

Euler-Lagrange equation (2) 
shows



4.3   EL equations with IOL
𝐮 and 𝑝 variations are unaffected, but IOL Lagrange 
multiplier adds new terms in Euler–Lagrange equations:
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𝐀 variation:  𝐉 ≡ 𝛁×𝐁
M!

= M
M!
𝐁 + N

M!
𝛁× 𝐮 +𝐰 + O𝝀"

OP
+ 𝛁× 𝝀Q×𝐮

Φ variation: 𝛁 7 𝝀Q = 0 where 𝝀Q ≡ 𝝀 − 𝜇R𝐂 — next iterate for 
𝝀. Hence all typical 𝝀 s satisfy 𝛁 7 𝝀 = 0 and 𝛁 7 𝐂 = 0
𝝃 variation:   𝜕P𝐮 + 𝛁×𝐮 ×𝐯 = −𝛁ℎ − 𝐚𝝀
Where, for conciseness we have defined Bernoulli head

ℎ ≡ S#

T
+ 𝜏 ln U

U$

and  𝐰 ≡ 𝐁×V"

U
and    𝐚V ≡ 𝜕P𝐰+ 𝐯 7 𝛁𝐰 + 𝛁𝐯 7 𝐰

Comparison with Calkin 1963 identifies 𝜆'
with polarization vector P



5.1 Magnetostatic force balance (with IOL)
• For simplicity consider magnetostatic case 𝜕! 4= 0, 𝐮 = 0, so 𝐂 = 𝐄
• 𝛁 4 𝐂 = 𝛁 4 𝐄 = −∇.Φ = 0. Boundary condition is Φ = const on 
𝜕Ω, hence throughout Ω, including boundaries, so  𝐄 = −𝛁Φ = 0. 

• I.e. 𝐂 = 0 and 𝝀1 = 𝝀 — iteration already converged!  Thus any
initial guess satisfying 𝛁 4 𝝀 = 0 is already feasible.

• I.e. converged 𝝀 is not unique, it depends on initial guess

• Using EL equations on previous slide we can also show that ideal 

force balance  𝛁𝑝 = 𝐉×𝐁 is satisfied, with 𝐉 = 2
3,
𝛁×𝐰. Thus

• the IOL constraint allows finite pressure gradient — 𝛁𝑝 ≠ 0

S15



5.2 General force balance (with IOL constraint term)

• As 𝝀 is held fixed while solving the augmented EL 
equations the momentum equation acquires residual 
force terms (iteration subscript 𝑘 implicit):

𝜕P 𝜌𝐮 + 𝛁 7 𝐓WXY + 𝐓Z[\ = 𝛁𝛌 7 𝐂

where      𝐓WXY ≡ 𝜌𝐮𝐮 + 𝑝 + ]#

T^!
𝐈 ,

𝐓Z[\ ≡ 𝛌Q 7 𝐂 − 𝛌Q 7 𝐮×𝐁 +
1
2
𝜇_R𝐶T 𝐈

+ 𝐁𝛌Q×𝐮 + 𝐮𝐁×𝛌Q + 𝛌Q𝐮×𝐁
• Clearly the RHS residual 𝛁𝛌 7 𝐂 → 0 as 𝐂 → 0 in the 

iteration, but it is not clear 𝐓Z[\ → 0 when 𝐮 ≠ 0 unless 
we can show 𝐁×𝛌Q → 0 (i.e. 𝛌Q∥ → 0) (still a TODO)
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6.1 Family of local QRxMHD dispersion relations

• Can we construct a Quasi Relaxed MHD (QRxMHD) family of 
magnetofluid models continuously connecting Relaxed MHD 
(RxMHD* — no IOL) with Ideal MHD (IMHD — exact IOL)?
• Introduce relaxation parameter 𝜖Za such that 𝜖Za = 1 gives 

RxMHD and 𝜖Za = 0 gives IMHD
• Look at plane-wave or WKB dispersion relations for the 

three MHD wave branches:  Alfvén waves, slow 
magnetosonic waves and fast magnetosonic waves

*R.L. Dewar, J.W. Burby, Z.S. Qu, N. Sato and M.J. Hole, Phys. Plasmas 27, 
062504-1--22 (2020)
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6.2 Alfvén wave dispersion relations
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IMHD

RxMHD

𝜖12 = 0 dispersion relation agrees with standard textbook IMHD dispersion relation 

𝑘∥ ≡ 𝐤 > 𝐁/𝐵



6.3 Slow magnetosonic dispersion relations
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𝜖12 = 0 dispersion relation agrees with standard textbook IMHD dispersion relation 

IMHD

RxMHD



6.4 Fast magnetosonic dispersion relations
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𝜖12 = 0 dispersion relation agrees with standard textbook IMHD dispersion relation 

IMHD

RxMHD



7 Two references on the Augmented Lagrangian method
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“One can trace its roots to the Calculus of Variations and 
the work of Euler and Lagrange … covers numerical 
methods for finite-dimensional optimization problems. It 
begins with very simple ideas progressing through more 
complicated concepts, concentrating on methods for 
both unconstrained and constrained optimization.”

Optimization theory:

• Provides a standardized 
language for precisely stating 
problems

• Provides a toolkit of practical 
algorithms for tackling such 
problems

A general text: “This comprehensive monograph 
analyzes Lagrange multiplier 
theory and shows its impact on 
the development of numerical 
algorithms for problems posed in 
a function space setting.”



8  Conclusion
• Have constructed a formalism for dynamical Relaxed MHD that 

generalizes Taylor relaxation by adding microscopic Mass conservation 
and constraints of global Entropy and Cross Helicity to Taylor’s Magnetic 
Helicity, plus a weak ideal-Ohm constraint

• Have proposed the augmented Lagrangian method as an efficient way 
of implementing the IOL constraint (and mass?), derived the 
corresponding Euler-Lagrange equations, and examined effect on 
momentum equation

• Now need to implement in equilibrium and time evolution problems to 
test the iteration method and show it provides a faster method of 
allowing reconnection than a full physics code

• Then aim to apply to stellarator optimization as part of Simons Collab.

• Also apply Augmented Lagrangian methods in other applications?
S22


