

Sherwood 2022 Santa Rosa, CA

Canberra Australia

Poster #20 Quasi-Relaxed Magnetohydrodynamics (QRxMHD) incorporating Ideal Ohm's Law (IOL) Constraint

R L Dewar & Z S Qu*

*Simons Foundation/SFARI (560651, AB) postdoc, Collaboration on *Hidden Symmetries and Fusion Energy*

Plan of presentation

- 1. Publications in this project so far
- 2. Motivation, questions, background
- 3. Variational dynamical formulation with IOL constraint
- 4. Euler-Lagrange equations
- 5. Magnetostatic and general force balance & nonuniqueness of Lagrange multiplier
- 6. QRxMHD dispersion relations
- 7. Two references on the Augmented Lagrangian method
- 8. Conclusions

1 Publications in this project so far

- 2015: Dewar, Yoshida, Bhattacharjee & Hudson, J. Plasma Phys. (doi:10.1017/S0022377815001336) "Variational formulation of relaxed & multi-region relaxed magnetohydrodynamics"
 Used only entropy and magnetic helicity as global constraints — gives only Euler flow dynamics (i.e. flow and magnetic field not coupled)
- 2020: Dewar, Burby, Qu, Sato & Hole, Phys. Plasmas
 (doi:10.1063/5.0005740) "Time-dependent relaxed
 magnetohydrodynamics inclusion of cross helicity constraint using
 phase-space action".

Added cross helicity constraint to couple fluid and magnetic field but did not enforce IOL — gives Relaxed MHD (RxMHD) dynamics which can violate Ideal Ohm's Law (IOL)

2022: Dewar & Qu, "Relaxed Magnetohydrodynamics with Ideal Ohm's Law (IOL) Constraint" (doi:10.1017/S0022377821001355)
 J. Plasma Phys. 88, 835880101-1--37 Introduced IOL equality constraint functional C = E + v×B, and suggested an iterative algorithm for finding the corresponding Lagrange multiplier
 http://dx.doi.org/10.1017/S0022377821001355

2.1 Motivation, questions, background

Summary

- Want a dynamical generalization of the magnetostatic Relaxed MHD (RxMHD) approach used in the Stepped Pressure Equilibrium Code (SPEC)
 - Also want to be able to treat continuous transitions between magnetostatic equilibria as a special case (embed relaxed magnetostatics in a more general framework)
- Find a formulation of a time-dependent quasi-relaxed MHD (QRxMHD) relaxed sufficiently that reconnection is allowed, but such that final relaxed steady-flow states can be made consistent with IOL: $\mathbf{E} + \mathbf{u} \times \mathbf{B} = 0$
- Use variational Hamiltonian mechanics framework get dynamics from Hamilton's Action Principle $\delta \mathcal{S}=0$
- Proposed solution satisfy IOL almost everywhere in \mathbf{x} , t ("almost" to allow reconnection where needed) using augmented Lagrangian method

2.2 QRxMHD applications: SPEC with cross-field flow & physical kinetic energy; Fast, well-posed replacement

SPEC is based on MRxMHD: M stands for Multiregion,

Rx stands for Relaxed; ..D stands for Dynamics

Typical relaxation domain: annular torus

Boundary defined by o two ideal-MHD interfaces

- Zhisong Qu has already developed a preliminary extension of SPEC for limited class of field-aligned steady flows — how can we include cross-field flows?
- \circ Arunav Kumar has used SPEC Hessian with a model kinetic energy based on δ function density concentrated on interfaces how do the interfaces "feel" the inertia of the relaxed plasma?
 - Beyond SPEC? If we find a fast method for calculating reconnected 3-D equilibria with pressure and potential profiles will we need to postulate interfaces at all? ⁵

2.3 *Ideal* MHD (IMHD: IOL pointwise, $E + u \times B \equiv 0$)

- Conventionally, we take the curl of IOL and *eliminate* ${\bf E}$ using the Maxwell-Faraday eq. ${\bf \nabla} \times {\bf E} + \partial_t {\bf B} = 0$, giving
 - $\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B})$
 - Magnetic field lines are *advected* by the fluid in with *no change in topology*: loops map to loops, invariant tori map to invariant tori, threaded by conserved magnetic fluxes: the "frozen-in flux" property $p \Rightarrow$ no reconnection too restrictive for development of islands in 3-D equilibria
- Works with current density calculated from $\mathbf{J} = \nabla \times \mathbf{B} / \mu_0$ no displacement current: "pre-Maxwellian" (Grad)
- Fluid equation of motion is $\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mathbf{J} \times \mathbf{B}$

2.4 History: Variational derivation of IMHD

- Most elegant way: unite fluid and and electrodynamics with a variational formulation similar to optimization
- Use MHD Lagrangian density $\mathcal{L}^{\mathrm{MHD}} = \frac{\rho u^2}{2} \frac{p}{\gamma 1} \frac{B^2}{2\mu_0}$ in Hamilton's Principle of Stationary Action $\mathcal{S} = \iint_{\Omega} \mathcal{L}^{\mathrm{MHD}} \, d^3x dt$
- Find a **stat**ionary "point" of the action, $\delta \mathcal{S} = 0$, subject to
 - Ideal Ohm's Law constraint $\mathbf{E} + \mathbf{u} \times \mathbf{B} = 0$ (IOL)
 - Maxwell's equations [except Ampére's law is pre-Maxwell and Poisson's equation is replaced by $\nabla \cdot \mathbf{E} = -\nabla \cdot (\mathbf{u} \times \mathbf{B})$]
 - Local mass and entropy conservation

<u>References</u>

- 1. Lagrangian picture: W.A. Newcomb, *Nucl. Fusion Suppl. Part 2*, 451–463 (1962)
- 2. Polarization representation: M.G. Calkin, Can. J. Phys. **41**, 2241-51 (1963) see later
- 3. Euler-Poincaré framework: V. Arnold *Ann. Inst. Fourier, Grenoble* **16,** 319-361 (1966) [fluid only, later did MHD with Khesin]

3.1 Canonical Phase-Space Lagrangian (PSL) density

Legendre transformation from a Hamiltonian to a Phase-Space Lagrangian:

$$\mathcal{L} = \pi \cdot \mathbf{v} - \frac{\pi^2}{2\rho} - \frac{p}{\gamma - 1} - \frac{B^2}{2\mu_0}$$
 (+ constraint terms in RxMHD)

where $\mathbf{\pi} \cdot \mathbf{v}$ is analogue of $p\dot{q}$ in finite-dimensional mechanics:

- π is canonical momentum density
- v is fluid velocity field with respect to Lagrangian reference frame (possibly moving in a reference flow)
- $\mathbf{B} = \nabla \times \mathbf{A}$ is magnetic field, μ_0 is vacuum permeability
- ρ and p are mass density and pressure fields

Use $\mathcal{L}^{\mathrm{Rx}}$ to form total MHD action $\mathcal{S} \equiv \iint_{\Omega} \mathcal{L} \ d^3xdt$ and find Hamiltonian equations as Euler–Lagrange equations from Hamilton's Principle $\delta\mathcal{S}=0$, with $\delta\mathbf{v}=\partial_t\boldsymbol{\xi}+\mathbf{v}\cdot\boldsymbol{\nabla}\boldsymbol{\xi}-\boldsymbol{\xi}\cdot\boldsymbol{\nabla}\mathbf{v}$ and $\delta\rho=-\boldsymbol{\nabla}\cdot(\rho\boldsymbol{\xi})$ (Newcomb 1962)

3.2 Noncanonical RxMHD PSL density (Burby)

$$\mathcal{L}^{\text{RX}} = \rho \mathbf{u} \cdot \mathbf{v} - \frac{\rho u^2}{2} - \frac{p}{\gamma - 1} - \frac{B^2}{2\mu_0} \\ + \tau \frac{\rho}{\gamma - 1} \ln \left(\kappa \frac{p}{\rho^{\gamma}} \right) + \mu \frac{\mathbf{A} \cdot \nabla \times \mathbf{A}}{2\mu_0} + \nu \frac{\mathbf{u} \cdot \nabla \times \mathbf{A}}{\mu_0} + \mathcal{L}^{\text{IOL}} \\ \frac{\text{Entropy}}{\text{constraint}} & \text{Magnetic helicity} & \text{Cross helicity} \\ \frac{\text{Cross helicity}}{\text{constraint}} & \text{constraint} \\ \end{aligned}$$

where we have made the noncanonical transformation $\mathbf{\pi} = \rho \mathbf{u}$, with

- u the lab-frame fluid velocity, v the fluid velocity relative to a reference flow (see EL equations), and
- τ , μ , and ν are Lagrange multipliers for entropy, magnetic helicity and cross helicity, respectively

3.3 Relaxed MHD dynamics as an "Optimization" Problem

stat \mathcal{S} under variations $\delta \mathbf{u}$, δp , $\delta \Phi$, $\delta \mathbf{A}$ & $\boldsymbol{\xi}$ subject to equality constraints:

$$\triangleright 1 \nabla \cdot \mathbf{B} = 0$$

$$\triangleright$$
 2 $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$ (local mass conservation $\Leftrightarrow \delta \rho = -\nabla \cdot (\rho \boldsymbol{\xi})$)

$$\succ$$
 3 $S_{\Omega}={
m const}$ (global entropy* conservation) Lagrange multiplier au

$$\succ$$
 4 $K_{\Omega}={
m const}$ (global magnetic helicity * conservation) Lagrange multiplier μ

> 5
$$K_{\Omega}^{\rm X}={\rm const}$$
 (global cross helicity* conservation) Lagrange multiplier ν

> 6
$$\|\mathbf{C}\| = 0$$
 (L² norm — weak IOL) Lagrange multiplier field $\lambda(\mathbf{x}, t)$

$$\triangleright$$
 7 $\nabla \times \mathbf{E} + \partial_t \mathbf{B} = 0$

Satisfy #1 & #7 using $\mathbf{B} = \nabla \times \mathbf{A}$, $\mathbf{E} = -\nabla \Phi - \partial_t \mathbf{A}$.

*Global Ideal MHD invariants: (Satisfy using global Lagrange multipliers.)

$$S_{\Omega} = \int_{\Omega} \frac{\rho}{\gamma - 1} \ln \left(\kappa \frac{p}{\rho^{\gamma}} \right) dV; \quad K_{\Omega} = \frac{1}{2\mu_0} \int_{\Omega} \mathbf{A} \cdot \nabla \times \mathbf{A} dV$$
 (magnetic helicity)

$$K_{\Omega}^{\rm X} = \frac{1}{\mu_0} \int_{\Omega} \mathbf{u} \cdot \nabla \times \mathbf{A} \, dV$$
 (cross helicity); and $\mathbf{C} = \mathbf{E} + \mathbf{u} \times \mathbf{B}$ (IOL)

3.4 Augmented Lagrangian method for weak IOL

- Pointwise constraint $\mathbf{C}(\mathbf{x},t)=0$ implies infinity of constraints whereas single weak constraint $\|\mathbf{C}\|=0$ is computationally more practical:
- Augment Lagrangian with a Lagrange multiplier field $\lambda(x,t)$ and a scalar quadratic penalty function: add constraint term

$$\mathcal{L}^{\text{IOL}} = \lambda_k \cdot \mathbf{C} - \frac{1}{2} \mu_k^{\text{P}} C^2$$

to Lagrangian density, where $\mathbf{C} = \mathbf{E} + \mathbf{v} \times \mathbf{B}$ is the constraint function, $\mu^P > 0$ is the penalty multiplier, and $k \in \mathbb{Z}$ is an iteration index:

Starting from an initial guess λ_0 and an efficient choice of μ_0^P , solve the corresponding EL equations for \mathbf{E} , \mathbf{u} & \mathbf{B} at each step to get \mathbf{C}_k and update λ_k using the rule (see e.g. Nocedal & Wright's text on numerical optimization)

$$\lambda_{k+1} = \lambda_k - \mu_k^P \mathbf{C}_k$$
 (for later use denote RHS by λ_k')

4.1 EL equations from PSL action principle (w/o IOL)

- Use phase-space action principle $\delta \int dt \int_{\Omega} \mathcal{L}^{\rm Rx} d^3x = 0$
- p variation: $\frac{1}{\nu-1} \left(1 \tau \frac{\rho}{p} \right) = 0 \Rightarrow p = \tau \rho$ (isothermal in Ω)
- **u** variation: $\rho \mathbf{v} = \rho \mathbf{u} \frac{\nu}{\mu_0} \mathbf{B}$ (see next slide) (2)
- A variation: $\mu_0 \mathbf{J} \equiv \nabla \times \mathbf{B} = \mu \mathbf{B} + \nu \nabla \times \mathbf{u}$ (generalized Beltrami eqn.) (3)
- ξ variation: $\partial_t(\rho \mathbf{u}) = \rho(\nabla \mathbf{u}) \cdot (\mathbf{v} \mathbf{u}) \nabla \cdot (\rho \mathbf{v} \mathbf{u} + p\mathbf{I})$ (4)
- $\triangleright \nabla \cdot (2)$ gives $\nabla \cdot (\rho \mathbf{u}) = \nabla \cdot (\rho \mathbf{v})$, so \mathbf{v} continuity implies \mathbf{u} continuity:

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{5}$$

 \triangleright Using (2) to eliminate \mathbf{v} in favor of \mathbf{u} in (4) gives equation of motion

$$\rho(\partial_t + \mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \mathbf{j}_{\omega} \times \mathbf{B}$$
 (6)

where $\mathbf{j}_{\boldsymbol{\omega}} = \frac{\nu}{\mu_0} \boldsymbol{\nabla} \times \mathbf{u} \equiv \frac{\nu}{\mu_0} \boldsymbol{\omega}$, a vorticity driven current and centrifugal term $\mathbf{u} \cdot \boldsymbol{\nabla} \mathbf{u}$ make static relaxed solution no longer force-free in usual sense.

4.2 EL equation (2) relates u and v flows

Cross Helicity conservation constraint generates a (non) canonical transformation to local frame of each fluid element in a field-aligned, mass conserving flow field $\mathbf{u}^{Rx}(\mathbf{x}, \mathbf{t})$. A physically valid representation because of the "hidden" *relabeling* symmetry that gives conservation of cross helicity?

4.3 EL equations with IOL

 ${\bf u}$ and p variations are unaffected, but IOL Lagrange multiplier adds new terms in Euler-Lagrange equations:

Comparison with Calkin 1963 identifies λ' with polarization vector **P**

A variation:
$$\mathbf{J} \equiv \frac{\nabla \times \mathbf{B}}{\mu_0} = \frac{\mu}{\mu_0} \mathbf{B} + \frac{\nu}{\mu_0} \nabla \times (\mathbf{u} + \mathbf{w}) + \frac{\partial \lambda'}{\partial t} + \nabla \times (\lambda' \times \mathbf{u})$$

 Φ variation: $\nabla \cdot \lambda' = 0$ where $\lambda' \equiv \lambda - \mu^{P}C$ — next iterate for

 λ . Hence all typical λ s satisfy $\nabla \cdot \lambda = 0$ and $\nabla \cdot \mathbf{C} = 0$

$$\xi$$
 variation: $\partial_t \mathbf{u} + (\nabla \times \mathbf{u}) \times \mathbf{v} = -\nabla h - \mathbf{a}_{\lambda}$

Where, for conciseness we have defined Bernoulli head

$$h \equiv \frac{u^2}{2} + \tau \ln \frac{\rho}{\rho_{\Omega}}$$

and
$$\mathbf{w} \equiv \frac{\mathbf{B} \times \lambda'}{\rho}$$
 and $\mathbf{a}_{\lambda} \equiv \partial_t \mathbf{w} + \mathbf{v} \cdot \nabla \mathbf{w} + (\nabla \mathbf{v}) \cdot \mathbf{w}$

5.1 Magnetostatic force balance (with IOL)

- For simplicity consider magnetostatic case $\partial_t \cdot = 0$, $\mathbf{u} = 0$, so $\mathbf{C} = \mathbf{E}$
- $\nabla \cdot \mathbf{C} = \nabla \cdot \mathbf{E} = -\nabla^2 \Phi = 0$. Boundary condition is $\Phi = \text{const}$ on $\partial \Omega$, hence throughout Ω , including boundaries, so $\mathbf{E} = -\nabla \Phi = 0$.
- I.e. $\mathbf{C} = 0$ and $\lambda' = \lambda$ iteration already converged! Thus *any* initial guess satisfying $\nabla \cdot \lambda = 0$ is already feasible.
- I.e. converged λ is not unique, it depends on initial guess
- Using EL equations on previous slide we can also show that ideal

force balance
$$\nabla p = \mathbf{J} \times \mathbf{B}$$
 is satisfied, with $\mathbf{J} = \frac{\nu}{\mu_0} \nabla \times \mathbf{w}$. Thus

• the IOL constraint allows finite pressure gradient — $\nabla p \neq 0$

5.2 General force balance (with IOL constraint term)

• As λ is held fixed while solving the augmented EL equations the momentum equation acquires residual force terms (iteration subscript k implicit):

$$\begin{split} \partial_t(\rho \mathbf{u}) + \nabla \cdot (\mathbf{T}_{\mathrm{MHD}} + \mathbf{T}_{\mathrm{Res}}) &= (\nabla \lambda) \cdot \mathbf{C} \\ \text{where} \quad \mathbf{T}_{\mathrm{MHD}} &\equiv \rho \mathbf{u} \mathbf{u} + \left(p + \frac{B^2}{2\mu_0}\right) \mathbf{I} \;, \\ \mathbf{T}_{\mathrm{Res}} &\equiv \left(\lambda' \cdot \mathbf{C} - \lambda' \cdot \mathbf{u} \times \mathbf{B} + \frac{1}{2} \mu_k^P C^2\right) \mathbf{I} \\ &+ \mathbf{B} \lambda' \times \mathbf{u} + \mathbf{u} \mathbf{B} \times \lambda' + \lambda' \mathbf{u} \times \mathbf{B} \end{split}$$

• Clearly the RHS residual $(\nabla \lambda) \cdot \mathbf{C} \to 0$ as $\mathbf{C} \to 0$ in the iteration, but it is not clear $\mathbf{T}_{\mathrm{Res}} \to 0$ when $\mathbf{u} \neq 0$ unless we can show $\mathbf{B} \times \lambda' \to 0$ (i.e. $\lambda'_{\parallel} \to 0$) (still a TODO)

6.1 Family of local QRxMHD dispersion relations

- Can we construct a Quasi Relaxed MHD (QRxMHD) family of magnetofluid models continuously connecting Relaxed MHD (RxMHD* — no IOL) with Ideal MHD (IMHD — exact IOL)?
- Introduce relaxation parameter ϵ_{Rx} such that $\epsilon_{Rx}=1$ gives RxMHD and $\epsilon_{Rx}=0$ gives IMHD
- Look at plane-wave or WKB dispersion relations for the three MHD wave branches: Alfvén waves, slow magnetosonic waves and fast magnetosonic waves

^{*}R.L. Dewar, J.W. Burby, Z.S. Qu, N. Sato and M.J. Hole, Phys. Plasmas **27**, 062504-1--22 (2020)

6.2 Alfvén wave dispersion relations

 $\epsilon_{\rm Rx}=0$ dispersion relation agrees with standard textbook IMHD dispersion relation

6.3 Slow magnetosonic dispersion relations

 $\epsilon_{\rm Rx}=0$ dispersion relation agrees with standard textbook IMHD dispersion relation

6.4 Fast magnetosonic dispersion relations

 $\epsilon_{\rm Rx}=0$ dispersion relation agrees with standard textbook IMHD dispersion relation

7 Two references on the Augmented Lagrangian method

Optimization theory:

- Provides a standardized language for precisely stating problems
- Provides a toolkit of practical algorithms for tackling such problems

A general text:

"One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange ... covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and **constrained optimization**." "This comprehensive monograph analyzes Lagrange multiplier theory and shows its impact on the development of numerical algorithms for problems posed in a function space setting."

8 Conclusion

- Have constructed a formalism for dynamical Relaxed MHD that generalizes Taylor relaxation by adding microscopic Mass conservation and constraints of global Entropy and Cross Helicity to Taylor's Magnetic Helicity, plus a weak ideal-Ohm constraint
- Have proposed the augmented Lagrangian method as an efficient way
 of implementing the IOL constraint (and mass?), derived the
 corresponding Euler-Lagrange equations, and examined effect on
 momentum equation
- Now need to implement in equilibrium and time evolution problems to test the iteration method and show it provides a faster method of allowing reconnection than a full physics code
- Then aim to apply to stellarator optimization as part of Simons Collab.
- Also apply Augmented Lagrangian methods in other applications?