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Abstract

Resistive wall tearing modes (RWTM) can cause major disruptions. A signature of

RWTMs is that the rational surface is sufficiently close to the wall to interact with it.

For (m,n) = (2, 1) modes, a RWTM requires normalized minor radius of the rational

surface ρq2 ≥ 0.75, which can also be expressed as q75 ≤ 2.Major disruptions can occur

when the criterion is satisfied. This is confirmed in simulations and theory and in a

DIII-D locked mode disruption database. The q75 < 2 criterion is valid at high β as

well as at low β. A very important feature of RWTMs is that they can be feedback

stabilized. If the ρq2 criterion is not satisfied, or if the wall is ideally conducting,

then the mode does not produce a major disruption, although it can produce a minor

disruption. Feedback, or rotation of the mode at the wall by complex feedback, can

emulate an ideal wall, preventing major disruptions. The ρq2 criterion depends weakly

on the wall radius. A simple geometric model of its dependence on wall radius is

given.

1 Introduction

Resistive wall tearing modes (RWTM) can cause major disruptions. This is based

on evidence from theory, simulations, and experimental data [1, 2, 3, 4, 5, 6]. For

example, DIII-D locked mode shot 154576 [7] experienced a major disruption. Linear

simulations [3] found the reconstructed equilibrium was stable with an ideal wall. and

found a scaling of the linear growth rate with the wall penetration time. Nonlinear

simulations found a complete thermal quench, and agreement with the experimental

thermal quench (TQ) time and the amplitude of the perturbed magnetic field.

A signature of RWTMs is that the rational surface is sufficiently close to the wall

to interact with it. For (m,n) = (2, 1) modes, the required rational surface radius for

a RWTM, normalized to the plasma radius, is ρq2 ≥ 0.75. This can also be expressed

as the value of q at ρ = 0.75, q75 < 2. Major disruptions can occur when the criterion

is satisfied. This is confirmed in simulations and theory. Experimentally, it is the

disruption criterion in a DIII-D locked mode disruption database [8]. The database

consists of tearing modes, nearly all having ρq2 ≥ 0.75, which cause disruptions. These

are properties of RWTMs.
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The q75 < 2 criterion is valid at high β as well as at low β. This is verified experi-

mentally [9] as well as in simulations.

A very important feature of RWTMs is that they can be feedback stabilized. With-

out feedback, they can produce major disruptions when the q75 < 2 criterion is satisfied.

This is verified experimentally and in simulations at low and high β.

The ρq2 ≥ 0.75 criterion applies to DIII-D, NSTX, and the MST - based model

discussed below. For ITER, the requirement is ρq2 ≥ 0.78. The critical ρq2 depends

weakly on the normalized wall radius ρw.

The outline of the paper is as follows. The domain of instability of RWTMs in the

(q75, β) plane is presented qualitatively in Sec.2. Also shown is the ρq2 > 0.75 database

of DIII-D locked mode disruptions. The relevance of mode locking, precursors, edge

cooling, and current contraction are discussed.

The computational model used for feedback and rotating wall is presented in Sec.3.

In Sec.4, simulations are presented of a sequence of equilibria in which major dis-

ruptions occur with a resistive wall, when q75 < 2.

Finite β experimental results in NSXT are presented in Sec.5.

Sec.6 shows simulations based on an NSTX intermediate βN equilibrium.

The reason for the q75 criterion is analyzed in Sec.7. The critical value of ρq2/ρw is

obtained.

A summary is provided in Sec.8.

2 RWTM parameter space

The expression ρq2 = 0.75, can be written as q75 = 2, where q75 = q(ρ = .75), which is

useful to represent the RWTM unstable parameter space. Fig.1(a) gives a schematic

parameter space (q75, β) of resistive wall modes (RWM) and RWTMs with ρw = 1.2.

The RWTM is unstable for q75 ≤ 2, indicated by a vertical line, as shown in the

following.

The RWM β limit is approximately the Troyon [10] βN limit of an external kink

interacting with a resistive wall. The RWTM is unstable below the RWM limit [11, 12].

The starred points in Fig.1(a) correspond to low and high β examples in Sec.4, Sec.5,

and Sec.6. The point at q75 = 1.8 is from DIII-D [3, 6]. Both low and high β RWTM

and RWM can be limited to minor disruptions by feedback, rotation, or an ideal wall.

Locking with resistive wall and without feedback or rotation allows a major disruption.

Fig.1(b) shows a database of DIII-D disruptivity [8] which depends on ρq2. The

onset is ρq2 = .75 or q75 = 2.

The disruptions occur for locked modes. Mode locking means that toroidal rotation

stops, destabilizing tearing modes [7, 13]. Sheared rotation stabilizes tearing modes

[15, 14, 16], including RWTMs [17, 18, 19].
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(a) (b)

Figure 1: (a) Schematic diagram of RWM and RWTM stability in (q75, β) space. The vertical

line at q75 = 2 is the RWTM stability boundary. (b) Disruptivity in a DIII-D locked mode

disruption database. Reproduced from [8] with IAEA permission.

Fig.1(b) also shows that ρq2 tends to increase between mode locking and the dis-

ruption. The diagonal line shows unchanged ρq2. The profiles evolve to reduce the edge

temperature and current density [20, 21]. This could be produced by edge cooling,

which causes current contraction and increase of ρq2, as in Fig.5(a).

A current contraction model [5] is discussed in Sec.7. Current contraction is caused

by edge cooling, which in turn can have several causes. One possible cause is overlap-

ping tearing modes in the edge region, called a Te,q2 collapse [7]. Another possibility

is resistive ballooning turbulence, proposed as an explanation of the Greenwald den-

sity limit [22]. Another possible cause of edge cooling is impurity radiation [23]. The

edge radiation might be raised by increasing the plasma density [24]. The impurities

might be introduced purposefully, as in massive gas injection [25, 26], or accidentally,

as UFOs, pieces of plasma facing tiles falling into the plasma. It should be noted that

the MGI simulations used an ideal wall boundary condition. These edge cooling mech-

anisms have been called causes of disruptions, but they are really precursors, which

can destabilize a RWTM.

3 Feedback

Active feedback and wall rotation can make the wall effectively ideal and suppress

RWTM major disruptions. There have been extensive theoretical [27, 28, 29] and

experimental studies of feedback stabilization [30, 31, 9]. To model feedback, consider

the magnetic diffusion equation at a thin resistive wall [1, 3, 6, 17]

∂ψw

∂t
=
rw
τw

(ψ′
vac − ψ′

p + ψ′
f ) (1)
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Figure 2: (a) q and RJφ profiles of model equilibria as a function of radius x = R−R0 for

model equilibria with qa = 2.0, 2.3, 3, 3.4. All but qa = 3.4 have q75 < 2. (b) time histories of

case qa = 3 with ideal, resistive, feedback, and rotating wall boundary conditions. In all but

the resistive wall case, only a minor disruption occurs.

where ψw is the magnetic potential at the wall, ψ′
p is its radial derivative on the

plasma side of the wall, τw = µ0rwδw/ηw, ηw, δw are wall resistivity and thickness,

rw = Rw − R0, the difference of wall major radius and magnetic axis, and ψ′
vac ≈

−mψw/rw is the radial derivative of ψw on the vacuum side of the wall. An external

feedback vacuum field ψ′
f is added with

ψ′
f = −D

τw
rw

(

γwψw +Ωw
∂ψw

∂φ

)

− hFψ′
p (2)

where the γw and Ωw terms model complex normal gain, h models transverse gain,

D(θ, ψw), F (θ, ψw) are screening functions of poloidal and toroidal angle of the wall,

modeling the location of the sensors. For now, take D = F = 1. They could be

taken non zero in future numerical studies, and might affect detailed predictions of the

modeling. Only toroidal mode number n = 1 is included in ψ′
f . The γw and Ωw terms

model saddle coils which sense bn ∝ ψ′
vac while h models probes which sense transverse

perturbed magnetic field bl ∝ ψ′
p. Then (1) can be expressed

∂ψw

∂t
=
rw
τw

[(ψ′
vac − (1 + h)ψ′

p]− γwψw − Ωw
∂ψw

∂φ
. (3)

The γw term causes damping of ψw and the Ωw term models a rotating wall boundary

condition [29, 32]. The relative rotation of the rational surface in the plasma and the

wall can stabilize a RWTM [18, 19].

In the simulations in this paper, only γw and Ωw are used, and are constant in time.

Simulations with h give similar results [6]. More advanced experimental methods vary

the feedback gain in time [9]. The goal here is to demonstrate that feedback or wall

rotation can prevent major disruptions, although it can permit minor disruptions.
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4 Low β RWTM disruptions

Simulations were performed with M3D [33] for a sequence of modified MST equilibria

[5, 6]. Here the results are extended by including simulations with feedback and wall

rotation, as discussed in Sec.3. The simulations had parameters: Lundquist number

S = 105, wall Lundquist number Sw = τw/τA = 103, where τw is the wall penetration

time defined in Sec.3, τA = R/vA is the Alfvén time, R is major radius, vA is Alfvén

velocity, and parallel thermal conductivity κ‖ = 10R2/τA. The simulation had 16

toroidal planes. In MST [4], the wall time is much longer than the pulse time, so the

wall is effectively ideal. Here and in [5], the resistive wall time is shortened, more like

in DIII-D and other tokamaks.

Fig.2 shows q(x) and RJφ(x) profiles for a sequence of modified MST equilibria [5]

with ρw = 1.2. The radius x = R − R0 is measured from the magnetic axis along the

major radius. The normalized minor radius ρ = x/a ≥ 0, where a is the plasma radius.

The profiles have q0 = 1 and edge qa = 2, 2.3, 3, 3.4. For qa ≤ 3, q75 < 2, so the

equilibria are unstable to RWTMs. The case qa = 3.4 is RWTM marginally stable.

Nonlinear simulations were initialized with these equilibria. It was shown [5] that with

an ideal wall, all the equilibria are unstable only to minor disruptions. For qa ≤ 3,

q75 < 2, with a resistive wall, major disruptions occur. If qa = 3.4, q75 > 2, and the

wall is resistive, the disruption is minor.

The particular case qa = 3, q75 = 1.75 is considered in more detail. Fig.2 (b)

shows time histories of thermal energy, the integrated pressure P for the case qa = 3,

with ideal wall, resistive wall, feedback, and wall rotation. A major disruption occurs

for a resistive wall. All the other boundary conditions give only minor disruptions.

Fig.3 shows contours of pressure and perturbed magnetic field in nonlinear simulations

(a) (b) (c) (d) (e)

Figure 3: Pressure p contours in nonlinear simulation of the qa case for (a) ideal wall, (b)

resistive wall, (c) perturbed magnetic flux ψ corresponding to case (b), (d) feedback stabiliza-

tion, (e) rotating wall. Fig.3(a),(b) reproduced from [5] with AIP permission.

corresponding to the time histories in Fig.2, including feedback and wall rotation. The

simulations demonstrate that ideal wall, feedback, and rotating wall limit growth of

tearing mode. A resistive wall (or no wall) allows a tearing mode to reach much larger

amplitude than an ideal wall, or similar boundary conditions. Contours of pressure p

are shown near the last times in the history plot Fig.2. The contour plots correspond
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to boundary conditions (a) ideal wall, (b) resistive wall with no rotation, (d) feedback,

and (e) edge rotation. Boundary conditions (d) and (e) are similar to (a), with small

perturbations and only minor disruptions. In (c), perturbed magnetic flux ψ contours

correspond to the pressure contours in (b). The perturbed flux is relevant to the anaysis

of ρq2 in Sec.7.

The feedback case in Fig.2 (b) and Fig.3 (d) has parameter γwτA = 0.02. The

rotation example in Fig.2 (b) and Fig.3 (e) has ΩwτA = 0.05. These values would be

expected to decrease with longer RWTM growth time.

5 High β NSTX RWTM

RWM and RWTM can be found together at high β. Both can be feedback stabilized.

Fig.4 gives an NSTX example [9] , with βN > 4, above the no wall limit. The feedback

Figure 4: feedback stabilized (2, 1) RWTM. The RWTM can be identified by its phase inver-

sion at ρq2 = 0.75. Reproduced from [9] with IAEA permission.

is with complex gain, which can vary in time as the modes grow. Time dependent

soft X ray data shows radial mode structure. Initially a locked RWM is stabilized

by feedback. It then spins up and converts to a stabilized external kink. It then

becomes in Fig.4 a feedback stabilized (2, 1) RWTM. The RWTM can be identified

by its phase inversion in soft X ray emission at ρq2 ≈ 0.75. It is a RWTM because it

is close enough to the wall to be affected by the feedback imposed at the wall. This

suggests that initially q0 > 1 on axis and ρq2 < 0.75. Resistive evolution causes current

profile peaking and decreases q0 on axis, pushing ρq2 ≥ 0.75. An example is seen in the

simulations of Sec.6.

A similar phenomenon is seen was seen in DIII-D [31]. After an ELM, a tearing

mode developed in shot 131753 with ρq2 ≈ 0.75, with growth time 10ms, when the

toroidal velocity at ρ75 ≈ 0. The mode caused a major disruption, in which the ratio

of initial to final β dropped from 1 to less than 0.25. It is possible that the mode was
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a neoclassical tearing mode (NTM) that was triggered by an ELM, but it was also

sufficiently close to the wall to be a RWTM. It might be noted that modeled NTMs

do not reach large amplitude [34] like RWTMs.

It appears that RWTMs were observed and feedback stabilized in KSTAR [35].

A simulation based on a KSTAR equilibrium reconstruction with βN = 3.7 showed

a (2, 1) mode with magnetic perturbations extending through the wall, evidently a

RWTM although not identified as such [35].

6 High β NSTX simulations

Simulations were done with M3D of modified NSTX equilibrium reconstructions of

shot 109070. The simulation parameters were the same as in Sec.4. An example is

given in Fig.5 with βN = 3. Fig.5(a) gives midplane q(x) profiles, x = R − R0, at
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Figure 5: (a) q(x) profiles with evolution to RWTM instability. (b) Time histories of thermal

energy P with different boundary conditions: ideal wall, resistive wall, feedback, and rotating

wall.

nearly the initial time, when q0 = 1.3 and q75 = 2.4. It appears stable to a (2, 1) and

(3, 1) mode. The initial state was not in resistive equilibrium. The plasma was allowed

to evolve resistively, with total current held constant in time. This caused the current

to contract until q0 ≈ 1, and q75 = 1.65. The equilibrium was then RWTM unstable

to a (2, 1) mode. Fig.5 (b) shows time histories of thermal energy P with different

boundary conditions: ideal wall, resistive wall, feedback, and wall rotation. Only the

case with resistive wall without feedback or wall rotation has a major disruption. The

other cases all have minor disruptions. Fig.6 shows contours of pressure with (a) ideal

wall; (b) resistive wall; (d) feedback; (e) rotating wall. A major disruption occurs only

with a locked resistive wall. The pressure contours have a large perturbation, as in

Fig.3. Fig.6(c) shows n > 1 contours of ψ. The perturbations are large lobes which

penetrate the wall.

The feedback example in Fig.5(b), Fig.6 (d) has parameter γwτA = 0.05. The

rotation example in Fig.5(b), Fig.6 (e) has ΩτA = 0.05.
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(a) (b) (c) (d) (e)

Figure 6: Contours of pressure near the end of the time histories in Fig.5(b). with (a)

ideal wall; (b) resistive wall; (c) perturbed magnetic flux of resistive case (b); (d) magnetic

feedback; (e) rotating wall.

At high β, there are also RWMs, resistive wall external kink modes. Evidently they

can also be stabilized by feedback [9] as mentioned in Sec.5. Simulations of RWMs will

be presented elsewhere.

7 Dependence of ρq2 on wall position

The critical ρq2 depends on normalized wall radius ρw. The critical value ρq2 = .75

occurs for ρw = 1.2, as in DIII-D, NSTX, and the MST model in Sec.4. This can be

obtained from a linear model [5] using modified [36] equilibrium profiles with current

density j(ρ) = 0 for ρ > ρc, with j(ρ) = (2/q0)(1 + ρ2ν)−(1+1/ν) − cr with cr =

(1 + ρ2νc )−(1+1/ν), and q(0) = 1. Contraction of the current profile is modeled with the

current cutoff radius ρc. The profile peakedness parameter ν is determined by ρc and qa.

Linear ideal MHD equations for perturbed magnetic flux ψ with mode number (2, 1)

were solved in a periodic cylinder. An example is given in Fig.7(a), with qa = 2.5,

ρc = 0.7. The normalized q = 2 radius is ρq2 = 0.9. Solutions of ψ(ρ) are given

for an ideal wall boundary condition ψ(ρw) = 0 and a no wall boundary condition

dψ(ρw)/dρ = −2ψ(ρw)/ρw. The stability parameter ∆′ = [ψ′(ρq2+)−ψ′(ρq2−)]/ψ(ρq2)

is calculated at ρq2 for ideal and no wall boundary conditions. For an ideal wall,

∆′ = ∆i = −0.26, while for no wall, ∆′ = ∆n = 1.38. This is an unstable RWTM. The

boundary condition causes ∆n > ∆i [1, 17] as can be seen in Fig.7(a). In Fig.7(b) are

plotted curves ρci(ρq2, ρw) for ∆i = 0 with ideal wall and ρcn(ρq2) with ∆n = 0 for no

wall. Four ρci curves are plotted, for ρw = 1.1, 1.2, 1.3, 1.5. There is only one ρcn(ρq2)

curve, since it does not depend on ρw. The RWTM is unstable for ρci ≥ ρc ≥ ρcn.

The unstable region is between the dotted curve for given ρci(ρw) and the solid curve
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ρcn. The onset condition for a RWTM is ρci = ρcn. All the curves satisfy ρq2 > ρc,

with the current contracted within ρq2, so that qa = 2/ρ2q2. For ρw = 1.2, ρq2 = 0.75
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 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1  1.2

qa, ρq2 = 2.5,0.9
ρc =  0.7
∆i, ∆n = -0.26,1.38 j

q
ψi
ψn

j, 
q,

 ψ

ρ

j, q, ψ 

(a) (b)

Figure 7: (a) ψ, j, and q, with ψ for ideal (ψi) and no wall (ψn). (b) Curves of ρci(ρq2), and

ρcn(ρq2) for ρw = 1.1, 1.2, 1.3, 1.5.

as in Fig.1(b). Fig.7(b) gives a relation between ρq2 and ρw, shown in Fig.8(a), where
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Figure 8: (a) ρq2/ρw is nearly constant, for ρw > 1.3. (b) model of wall interaction of

(m,n) = (2, 1) mode.

ρq2/ρw is constant, up to a critical value of ρw > 1.3. For ρw > 1.5, the mode becomes

a no wall tearing mode, and does not interact with the wall.

A simple way to estimate ρq2/ρw is to require that the tearing mode magnetic

perturbation extend to the wall, ρw = ρq2 + 1/(k⊥a), where k⊥a = m/ρq2, m is the

poloidal mode number, and a is the wall radius. Then

ρq2 = ρw/(1 + 1/m). (4)

This is labelled “fit 1” in Fig.8(b). A lower bound is obtained by noting that the

magnetic n ≥ 1 perturbations shown in Fig.3(c) and Fig.6(c) are lobes which extend

into the wall. In Fig.8(b), an (m,n) lobe is modeled as dividing the contour ρ = ρq2 into
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2m arcs with ends at angles 0, π/m, . . . The midpoints are at π/(2m), . . . . A chord of

length ρm = 2 sin(π/4m)ρq2 can be drawn connecting the midpoint of the arc labelled

“A” to the intersection of the arc with the x axis at “B”. This is the radius of a circle

with origin at “A”, shown in Fig.8(b). It models a lobe of a (m,n) mode structure. The

radius of the circle must be large enough to intersect the wall, such that ρw ≤ ρq2+ρm.

This can be expressed as (4) with 2 sin(π/(4m)) replacing 1/m. This is labelled “fit

2” in Fig.7(a). The calculated line in Fig.8(a) intersects the fit at ρq2 = 0.85, where

according to Fig.7(b), ρw = 1.5. This suggests that for larger ρw, the wall is too far

away to interact with the mode.

8 Summary

To summarize, resistive wall tearing modes (RWTM) can cause cause major disrup-

tions. A signature of RWTMs is that the rational surface is sufficiently close to the

wall to interact with it. For (m,n) = (2, 1) modes, the rational surface radius of the

q = 2 surface, normalized to the plasma minor radius, is ρq2 > 0.75, for normalized wall

radius ρw = 1.2. This can also be expressed as the value of q at ρq2 = 0.75, q75 < 2.

The ρq2 criterion is weakly dependent on ρw. The domain of instability of RWTMs

in the (q75, β) plane was presented qualitatively. The ρq2 > 0.75 criterion was found

in a DIII-D locked mode disruption database. The importance of mode locking and

disruption precursors was discussed.

A very important feature of RWTMs is that they can be stabilized by feedback

and wall rotation. The computational model used for feedback and rotating wall was

discussed. Stabilization was verified in simulations of a sequence of low β equilibria. It

was shown that when the wall is resistive and the q75 criterion is satisfied, the saturated

mode amplitude is large.

At high β, feedback stabilized (2, 1) modes were observed in NSTX with ρq2 ≈

0.75, indicating wall interaction, implying a RWTM. Simulations were performed using

modified NSTX equilibria at moderate βN = 3, which satisfied q75 < 2, and produced

major disruptions with a resistive wall, minor disruptions with an ideal wall, feedback,

or rotating wall.

The ρq2 criterion was analyzed in model simulations, and a simple geometric model

of its dependence on ρw was given. The ratio ρq2/ρw is nearly constant up to a critical

ρw > 1.3. For ρw > 1.5, the wall is too far away for a RWTM and the mode becomes

a no wall tearing mode.

In conclusion, (m,n) = (2, 1) RWTMs satisfy a ρq2 condition. The boundary con-

ditions at the wall can prevent a major disruption. With an ideally conducting wall,

tearing modes produce only minor disruptions. Feedback and rotating wall boundary

conditions act like an ideal wall. This could potentially eliminate disruptions from
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tokamaks, greatly enhancing the prospects of magnetic fusion.
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